Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler

被引:101
作者
Liu, Ming [1 ]
Cheng, Zhu [3 ]
Ganapathy, Swapna [1 ]
Wang, Chao [1 ]
Haverkate, Lucas A. [2 ]
Tulodziecki, Michal [2 ]
Unnikrishnan, Sandeep [2 ]
Wagemaker, Marnix [1 ]
机构
[1] Delft Univ Technol, Sect Storage Electrochem Energy Radiat Sci & Tech, Fac Sci Appl, NL-2629 JB Delft, Netherlands
[2] Dutch Natl Inst Appl Sci Res, NO Holst Ctr, High Tech Campus 31, NL-5656 AE Eindhoven, Netherlands
[3] Nanjing Univ, Ctr Energy Storage Mat & Technol, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct,Coll Engn & Appl, Nanjing 210008, Jiangsu, Peoples R China
关键词
COMPOSITE POLYMER ELECTROLYTES; LITHIUM METAL ANODE; CONDUCTIVITY ENHANCEMENT; BATTERIES; TEMPERATURE; CHALLENGES;
D O I
10.1021/acsenergylett.9b01371
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In common hybrid solid electrolytes (HSEs), either the ionic conductivity of the polymer electrolyte is enhanced by the presence of a nanosized inorganic filler, which effectively decrease the glass-transition temperature, or the polymer solid electrolyte acts mostly as a flexible host for the inorganic solid electrolyte, the latter providing the conductivity. Here a true HSE is developed that makes optimal use of the high conductivity of the inorganic solid electrolyte and the flexibility of the polymer matrix. It is demonstrated that the LAGP (Li1.5Al0.5Ge1.5(PO4)(3)) participates in the overall conductivity and that the interface environment between the poly(ethylene oxide) (PEO) and LAGP plays a key role in utilizing the high conductivity of the LAGP. This HSE demonstrates promising cycling versus Li-metal anodes and in a full Li-metal solid-state battery. This strategy offers a promising route for the development of Li-metal solid-state batteries, aiming for safe and reversible high-energy-density batteries.
引用
收藏
页码:2336 / 2342
页数:13
相关论文
共 53 条
  • [1] Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
  • [2] A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    Aurbach, D
    Zinigrad, E
    Cohen, Y
    Teller, H
    [J]. SOLID STATE IONICS, 2002, 148 (3-4) : 405 - 416
  • [3] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    [J]. NANO ENERGY, 2018, 46 : 176 - 184
  • [4] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [5] Epp V., 2015, HDB SOLID STATE BATT, P133
  • [6] Succinonitrile as a versatile additive for polymer electrolytes
    Fan, Li-Zhen
    Hu, Yong-Sheng
    Bhattacharyya, Aninda J.
    Maier, Joachim
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (15) : 2800 - 2807
  • [7] Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer
    Feng, Wuliang
    Dong, Xiaoli
    Lai, Zhengzhe
    Zhang, Xinyue
    Wang, Yonggang
    Wang, Congxiao
    Luo, Jiayan
    Xia, Yongyao
    [J]. ACS ENERGY LETTERS, 2019, 4 (07) : 1725 - 1731
  • [8] Peeking across Grain Boundaries in a Solid-State Ionic Conductor
    Ganapathy, Swapna
    Yu, Chuang
    van Eck, Ernst R. H.
    Wagemaker, Marnix
    [J]. ACS ENERGY LETTERS, 2019, 4 (05) : 1092 - 1097
  • [9] Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]
  • [10] Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
    Khurana, Rachna
    Schaefer, Jennifer L.
    Archer, Lynden A.
    Coates, Geoffrey W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (20) : 7395 - 7402