Advances in Magnetics Roadmap on Spin-Wave Computing

被引:264
作者
Chumak, A. V. [1 ]
Kabos, P. [2 ]
Wu, M. [3 ]
Abert, C. [1 ,4 ]
Adelmann, C. [5 ]
Adeyeye, A. O. [6 ]
Akerman, J. [7 ]
Aliev, F. G. [8 ,9 ]
Anane, A. [10 ]
Awad, A. [7 ]
Back, C. H. [1 ,11 ]
Barman, A. [12 ]
Bauer, G. E. W. [13 ,14 ]
Becherer, M. [15 ]
Beginin, E. N. [16 ]
Bittencourt, V. A. S. V. [17 ]
Blanter, Y. M. [18 ]
Bortolotti, P. [10 ]
Boventer, I. [10 ]
Bozhko, D. A. [19 ]
Bunyaev, S. A. [20 ]
Carmiggelt, J. J. [18 ]
Cheenikundil, R. R. [21 ]
Ciubotaru, F. [5 ]
Cotofana, S. [22 ]
Csaba, G. [23 ]
Dobrovolskiy, O. V. [1 ]
Dubs, C. [24 ]
Elyasi, M. [13 ]
Fripp, K. G. [25 ]
Fulara, H. [26 ]
Golovchanskiy, I. A. [27 ,28 ]
Gonzalez-Ballestero, C. [29 ,30 ]
Graczyk, P. [31 ]
Grundler, D. [32 ,33 ]
Gruszecki, P. [34 ]
Gubbiotti, G. [35 ]
Guslienko, K. [36 ,37 ]
Haldar, A. [38 ]
Hamdioui, S. [22 ]
Hertel, R. [21 ]
Hillebrands, B. [39 ]
Hioki, T. [13 ]
Houshang, A. [7 ]
Hu, C. -M. [40 ]
Huebl, H. [41 ]
Huth, M. [42 ]
Iacocca, E. [19 ]
Jungfleisch, M. B. [43 ]
Kakazei, G. N. [20 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] NIST, Boulder, CO 80305 USA
[3] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[4] Univ Vienna, Res Platform MMM Math Magnetism Mat, A-1090 Vienna, Austria
[5] IMEC, B-3001 Leuven, Belgium
[6] Univ Durham, Dept Phys, Durham DH1 3LE, England
[7] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
[8] Univ Autonoma Madrid, Inst Nicolas Cabrera INC, Dept Fis Mat Condensada C III, E-28049 Madrid, Spain
[9] Univ Autonoma Madrid, Condensed Matter Phys Inst IFIMAC, E-28049 Madrid, Spain
[10] Thales Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[11] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[12] SN Bose Natl Ctr Basic Sci, Dept Condensed Matter Phys & Mat Sci, Kolkata 700106, India
[13] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[14] Univ Groningen, Zernike Inst Adv Mat, NL-9712 CP Groningen, Netherlands
[15] Tech Univ Munich, Dept Elect & Comp Engn, D-80333 Munich, Germany
[16] Saratov NG Chernyshevskii State Univ, Lab Magnet Metamaterials, Saratov 410012, Russia
[17] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[18] Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, NL-2628 CJ Delft, Netherlands
[19] Univ Colorado, Dept Phys & Energy Sci, Colorado Springs, CO 80918 USA
[20] Univ Porto, Dept Fis & Astron, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, P-4169007 Porto, Portugal
[21] Univ Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France
[22] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[23] Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, H-1083 Budapest, Hungary
[24] INNOVENT eV Technologieentwicklung, D-07745 Jena, Germany
[25] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England
[26] IIT Roorkee, Dept Phys, Roorkee 247667, Uttar Pradesh, India
[27] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[28] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[29] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[30] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[31] Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland
[32] Ecole Polytech Fed Lausanne EPFL, Inst Mat IMX, CH-1015 Lausanne, Switzerland
[33] Ecole Polytech Fed Lausanne EPFL, Inst Elect & Micro Engn IEM, CH-1015 Lausanne, Switzerland
[34] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat ISQI, Fac Phys, PL-61614 Poznan, Poland
[35] Univ Perugia, CNR, Ist Officina Mat IOM, Dipartimento Fis & Geol, I-06123 Perugia, Italy
[36] Univ Pais Vasco UPV EHU, Div Fis Mat, Depto Polimeros & Mat Avanzados, Fis Quim & Tecnol, San Sebastian 20018, Spain
[37] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
[38] IIT Hyderabad, Dept Phys, Kandi 502284, India
[39] Tech Univ Kaiserslautern, Fachbereich Physik & Landesforschungszentrum OPTI, D-67663 Kaiserslautern, Germany
[40] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[41] Bayer Akademie Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[42] Goethe Univ, Physikal Inst, D-60438 Frankfurt, Germany
[43] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[44] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[45] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[46] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[47] Univ Grenoble Alpes, CNRS, Alternat Energies & Atom Energy Commiss CEA, Spintec,Grenoble INP, F-38054 Grenoble, France
[48] Univ Western Australia, Dept Phys & Astrophys, Perth, WA 6009, Australia
[49] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[50] Nord Quant, Sherbrooke, PQ, Canada
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Magnonics; Physics; Three-dimensional displays; Quantum computing; Nanoscale devices; Magnetic domains; Logic gates; Computing; data processing; magnon; magnonics; spin wave; ROOM-TEMPERATURE; MICROMAGNETIC SIMULATIONS; TUNABLE MAGNETISM; MAGNONIC CRYSTAL; DOMAIN-WALLS; PROPAGATION; MODES; RESONANCE; STATES; SPECTROSCOPY;
D O I
10.1109/TMAG.2022.3149664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors, which covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with the Boolean digital data, unconventional approaches, such as neuromorphic computing, and the progress toward magnon-based quantum computing. This article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction.
引用
收藏
页数:72
相关论文
共 529 条
  • [1] Micromagnetics and spintronics: models and numerical methods
    Abert, Claas
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (06)
  • [2] A fast finite-difference algorithm for topology optimization of permanent magnets
    Abert, Claas
    Huber, Christian
    Bruckner, Florian
    Vogler, Christoph
    Wautischer, Gregor
    Suess, Dieter
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 122 (11)
  • [3] A self-consistent spin-diffusion model for micromagnetics
    Abert, Claas
    Ruggeri, Michele
    Bruckner, Florian
    Vogler, Christoph
    Manchon, Aurelien
    Praetorius, Dirk
    Suess, Dieter
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [4] ANALOG SIGNAL-PROCESSING WITH MICROWAVE MAGNETICS
    ADAM, JD
    [J]. PROCEEDINGS OF THE IEEE, 1988, 76 (02) : 159 - 170
  • [5] First-order reversal curves (FORCs) of nano-engineered 3D Co-Fe structures
    Al Mamoori, Mohanad
    Schroeder, Christian
    Keller, Lukas
    Huth, Michael
    Mueller, Jens
    [J]. AIP ADVANCES, 2020, 10 (01)
  • [6] Ultrafast Ising Machines using spin torque nano-oscillators
    Albertsson, Dagur Ingi
    Zahedinejad, Mohammad
    Houshang, Afshin
    Khymyn, Roman
    Akerman, Johan
    Rusu, Ana
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (11)
  • [7] Albisetti E, 2016, NAT NANOTECHNOL, V11, P545, DOI [10.1038/nnano.2016.25, 10.1038/NNANO.2016.25]
  • [8] Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets
    Albisetti, Edoardo
    Tacchi, Silvia
    Silvani, Raffaele
    Scaramuzzi, Giuseppe
    Finizio, Simone
    Wintz, Sebastian
    Rinaldi, Christian
    Cantoni, Matteo
    Raabe, Jorg
    Carlotti, Giovanni
    Bertacco, Riccardo
    Riedo, Elisa
    Petti, Daniela
    [J]. ADVANCED MATERIALS, 2020, 32 (09)
  • [9] Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures
    Albisetti, Edoardo
    Pettio, Daniela
    Sala, Giacomo
    Silvani, Raffaele
    Tacchi, Silvia
    Finizio, Simone
    Wintz, Sebastian
    Calo, Annalisa
    Zheng, Xiaorui
    Raabe, Jorg
    Riedo, Elisa
    Bertacco, Riccardo
    [J]. COMMUNICATIONS PHYSICS, 2018, 1
  • [10] Localized domain-wall excitations in patterned magnetic dots probed by broadband ferromagnetic resonance
    Aliev, F. G.
    Awad, A. A.
    Dieleman, D.
    Lara, A.
    Metlushko, V.
    Guslienko, K. Y.
    [J]. PHYSICAL REVIEW B, 2011, 84 (14):