Comparison of Machine Learning Approaches with Traditional Methods for Predicting the Compressive Strength of Rice Husk Ash Concrete
被引:42
作者:
论文数: 引用数:
h-index:
机构:
Amin, Muhammad Nasir
[1
]
Iqtidar, Ammar
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Civil Engn, Abbottabad Campus, Abbottabad 22060, PakistanKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Iqtidar, Ammar
[2
]
Khan, Kaffayatullah
论文数: 0引用数: 0
h-index: 0
机构:
King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi ArabiaKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Khan, Kaffayatullah
[1
]
Javed, Muhammad Faisal
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Civil Engn, Abbottabad Campus, Abbottabad 22060, PakistanKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Javed, Muhammad Faisal
[2
]
Shalabi, Faisal, I
论文数: 0引用数: 0
h-index: 0
机构:
King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi ArabiaKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Shalabi, Faisal, I
[1
]
Qadir, Muhammad Ghulam
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Environm Sci, Abbottabad Campus, Abbottabad 22060, PakistanKing Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
Qadir, Muhammad Ghulam
[3
]
机构:
[1] King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
rice husk ash;
compressive strength;
ANN modeling;
ANFIS modeling;
construction industry;
concrete;
ARTIFICIAL NEURAL-NETWORK;
FLY-ASH;
CEMENT;
DURABILITY;
EMISSIONS;
MODEL;
SHEAR;
D O I:
10.3390/cryst11070779
中图分类号:
O7 [晶体学];
学科分类号:
0702 ;
070205 ;
0703 ;
080501 ;
摘要:
Efforts are being devoted to reducing the harmful effect of the construction industry around the globe, including the use of rice husk ash as a partial replacement of cement. However, no method is available to date to predict the compressive strength (CS) of rice husk ash blended concrete (RHAC). In this study, advanced machine learning techniques (artificial neural network, artificial neuro-fuzzy inference system) were used to predict the CS of RHAC. Based on the published literature, six inputs, i.e., age of specimen, percentage of rice husk ash, percentage of superplasticizer, aggregates, water, and amount of cement, were selected. Results obtained from machine learning methods were compared with traditional methods such as linear and non-linear regressions. It was observed that the performance of machine learning methods was superior to traditional methods for determining the CS of RHAC. This study will prove beneficial in minimizing the cost and time of executing laboratory experiments for designing the optimum content portions of RHAC.
机构:
Univ Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Univ Technol Troyes, Inst Charles Delaunay, CNRS, FRE 2848,Lab CREIDD, F-10010 Troyes, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Chen, C.
;
Habert, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Habert, G.
;
Bouzidi, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Troyes, Inst Charles Delaunay, CNRS, FRE 2848,Lab CREIDD, F-10010 Troyes, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Bouzidi, Y.
;
Jullien, A.
论文数: 0引用数: 0
h-index: 0
机构:
DDGC, Lab Cent Pants & Chaussees, F-44341 Bouguenais, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
机构:
Univ Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Univ Technol Troyes, Inst Charles Delaunay, CNRS, FRE 2848,Lab CREIDD, F-10010 Troyes, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Chen, C.
;
Habert, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Habert, G.
;
Bouzidi, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Troyes, Inst Charles Delaunay, CNRS, FRE 2848,Lab CREIDD, F-10010 Troyes, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France
Bouzidi, Y.
;
Jullien, A.
论文数: 0引用数: 0
h-index: 0
机构:
DDGC, Lab Cent Pants & Chaussees, F-44341 Bouguenais, FranceUniv Paris Est, Lab Cent Pants & Chaussees, F-75732 Paris 15, France