MULTIPLE POSITIVE SOLUTIONS FOR SCHRODINGER-POISSON SYSTEM IN R3 INVOLVING CONCAVE-CONVEX NONLINEARITIES WITH CRITICAL EXPONENT

被引:13
作者
Li, Miao-Miao [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; Mountain Pass Theorem; Ekeland's variational principle; critical exponent; concentration compactness principle; SEMILINEAR ELLIPTIC-EQUATIONS; THOMAS-FERMI; R-N; ATOMS;
D O I
10.3934/cpaa.2017076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multiple positive solutions of the following Schrodinger-Poisson system with critical exponent { -Delta u - l(x)phi u = lambda h(x)vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(4)u, in R-3, -Delta phi = l(x)u(2), in R-3, where 1 < q < 2 and lambda > 0. Under some appropriate conditions on l and h, we show that there exists lambda* > 0 such that the above problem has at least two positive solutions for each lambda is an element of (0, lambda*) by using the Mountain Pass Theorem and Ekeland's Variational Principle.
引用
收藏
页码:1587 / 1602
页数:16
相关论文
共 32 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   Multiple positive solutions for semilinear elliptic equations in RN involving critical exponents [J].
Alves, CO ;
Goncalves, JV ;
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (04) :593-615
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]   Elliptic variational problems in RN with critical growth [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :10-32
[6]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[7]  
[Anonymous], 1997, Minimax theorems
[8]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[9]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[10]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P282