Epitaxial piezoelectric MEMS on silicon

被引:68
作者
Isarakorn, D. [1 ]
Sambri, A. [2 ]
Janphuang, P. [1 ]
Briand, D. [1 ]
Gariglio, S. [2 ]
Triscone, J-M [2 ]
Guy, F. [3 ]
Reiner, J. W. [4 ]
Ahn, C. H. [4 ]
de Rooij, N. F. [1 ]
机构
[1] EPFL, Inst Microengn IMT, Actuators & Microsyst Lab SAMLAB, CH-2000 Neuchatel, Switzerland
[2] Univ Geneva, Dept Condensed Matter Phys, CH-1211 Geneva 4, Switzerland
[3] HEPIA, TIN, CH-1202 Geneva, Switzerland
[4] Yale Univ, Dept Appl Phys, Becton Ctr, New Haven, CT 06520 USA
基金
瑞士国家科学基金会;
关键词
THIN-FILMS; ACTUATORS; PB(ZR0.2TI0.8)O-3; GROWTH; SI;
D O I
10.1088/0960-1317/20/5/055008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the microfabrication and characterization of piezoelectric MEMS structures based on epitaxial Pb(Zr0.2Ti0.8)O-3 (PZT) thin films grown on silicon wafers. Membranes and cantilevers are realized using a sequence of microfabrication processes optimized for epitaxial oxide layers. Different issues related to the choice of materials and to the influence of the fabrication processes on the properties of the piezoelectric films are addressed. These epitaxial PZT transducers can generate relatively large deflections at low bias voltages in the static mode. Estimations of the piezoelectric coefficient d(31) of the epitaxial PZT thin film (100 nm) yield 130 pm V-1. In the dynamic mode, the performance of the epitaxial PZT transducers in terms of the resonant frequency, modal shape and quality factor are examined. An epitaxial PZT/Si cantilever (1000 x 2500 x 40 mu m(3)) resonating in air and in vacuum exhibits a deflection of several microns with quality factors of 169 and 284, respectively. For a 1500 mu m diameter membrane, the quality factor is 50 at atmospheric pressure, and this rises to 323 at a pressure of 0.1 mbar. These results indicate the high potential of epitaxial piezoelectric MEMS, which can impact a variety of technological applications.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Laser micromachining of free-standing structures in SiO2-covered silicon [J].
Allard, M ;
Boughaba, S ;
Meunier, M .
APPLIED SURFACE SCIENCE, 1997, 109 :189-193
[2]   Microfabrication of piezoelectric MEMS [J].
Baborowski, J .
INTEGRATED FERROELECTRICS, 2004, 66 :3-+
[3]   All-Oxide Crystalline Microelectromechanical systems [J].
Biasotti, M. ;
Pellegrino, L. ;
Bellingeri, E. ;
Bernini, C. ;
Siri, A. S. ;
Marre, D. .
PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01) :839-842
[4]  
CHONGE SG, 1994, APPL PHYS LETT, V64, P3407
[5]   Ferroelectric Sensors [J].
Damjanovic, Dragan ;
Muralt, Paul ;
Setter, Nava .
IEEE SENSORS JOURNAL, 2001, 1 (03) :191-206
[6]   Strain relaxation and critical temperature in epitaxial ferroelectric Pb(Zr0.20Ti0.80)O3 thin films [J].
Gariglio, S. ;
Stucki, N. ;
Triscone, J.-M. ;
Triscone, G. .
APPLIED PHYSICS LETTERS, 2007, 90 (20)
[7]   Dry etching of all-oxide transparent thin film memory transistors [J].
Giesbers, JB ;
Prins, MWJ ;
Cillessen, JFM ;
vanEsch, HA .
MICROELECTRONIC ENGINEERING, 1997, 35 (1-4) :71-74
[8]   Epitaxial ferroelectric PbZrxTi1-xO3 thin films for non-volatile memory applications [J].
Guerrero, C ;
Ferrater, C ;
Roldán, J ;
Trtík, V ;
Sánchez, F ;
Varela, M .
MICROELECTRONICS RELIABILITY, 2000, 40 (4-5) :671-674
[9]  
Haccart T., 2002, Semiconductor Physics Quantum Electronics & Optoelectronics, V5, P78
[10]  
HISHINUMA Y, 2004, ASME 2004 INT MECH E, P299