Deep learning strategies for critical heat flux detection in pool boiling
被引:37
|
作者:
Rassoulinejad-Mousavi, Seyed Moein
论文数: 0引用数: 0
h-index: 0
机构:
Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USADrexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
Rassoulinejad-Mousavi, Seyed Moein
[1
]
Al-Hindawi, Firas
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
Arizona State Univ, ASU Mayo Ctr Innovat Imaging, Tempe, AZ 85281 USADrexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
Al-Hindawi, Firas
[2
,3
]
Soori, Tejaswi
论文数: 0引用数: 0
h-index: 0
机构:
Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USADrexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
Soori, Tejaswi
[1
]
Rokoni, Arif
论文数: 0引用数: 0
h-index: 0
机构:
Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USADrexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
Rokoni, Arif
[1
]
Yoon, Hyunsoo
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Binghamton, Dept Syst Sci & Ind Engn, Binghamton, NY 13902 USADrexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
Yoon, Hyunsoo
[4
]
论文数: 引用数:
h-index:
机构:
Hu, Han
[5
]
论文数: 引用数:
h-index:
机构:
Wu, Teresa
[2
,3
]
论文数: 引用数:
h-index:
机构:
Sun, Ying
[1
]
机构:
[1] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
[2] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[3] Arizona State Univ, ASU Mayo Ctr Innovat Imaging, Tempe, AZ 85281 USA
[4] SUNY Binghamton, Dept Syst Sci & Ind Engn, Binghamton, NY 13902 USA
[5] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA
Critical heat flux;
Deep learning;
Transfer learning;
Convolutional neural network;
Pool boiling;
CONVOLUTIONAL NEURAL-NETWORKS;
PREDICTION;
CLASSIFICATION;
FLOW;
CANCER;
MODEL;
CHF;
D O I:
10.1016/j.applthermaleng.2021.116849
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Image-based deep learning (DL) models are employed to enable the detection of critical heat flux (CHF) based on pool boiling experimental images. Most machine learning approaches for pool boiling to date focus on a single dataset under a certain heater surface, working fluid, and operating conditions. For new datasets collected under different conditions, a significant effort in re-training the model or developing a new model is required under the assumption the new dataset has a sufficient amount of data. This research is to explore strategies of DL adapting to new datasets with limited data available. The insights gained could help improve the practicality and reliability of DL for boiling regime studies. Specifically, convolutional neural networks (CNN) and transfer learning (TL) are studied. Using a base model trained and tested for one public dataset (DS1), CNN and TL models are trained with a small portion of a new public dataset (DS2) and tested for the rest of DS2. Results show that TL outperforms CNN by having much higher accuracy and a much lower false negative rate for scarce data (less than5% DS2). When 1% DS2 is used for re-training in CNN versus fine-tuning in TL, the TL model can detect the CHF with an accuracy of 94.79% and a false negative rate of 0.0997, compared with the CNN model with an accuracy of 85.10% and a false negative rate of 0.3237. To further demonstrate the advantage of TL over CNN, an in-house dataset (DS3) is acquired. With less than 0.05% DS3 being used, the TL model can detect the CHF with an accuracy of 95.31% and a false negative rate of 0.0016, compared with the CNN model with an accuracy of 85.91% and a false negative rate of 0.1263. It is observed that TL has much higher robustness than CNN by having more consistent results and smaller standard deviations over multiple trials using stratified random sampling from both DS2 and DS3. Besides, the training time for TL is significantly lower than CNN when limited data used in the re-training and fine-tuning for both DS2 and DS3. These results demonstrate the ability of TL for handling data scarcity in pool boiling applications with potentials for real-time implementations.
机构:
McMaster Univ, Dept Engn Phys, 1280 Main St West, Hamilton, ON L8S 4L7, CanadaMcMaster Univ, Dept Engn Phys, 1280 Main St West, Hamilton, ON L8S 4L7, Canada
Behdadi, Azin
Talebi, Farshad
论文数: 0引用数: 0
h-index: 0
机构:
McMaster Univ, Dept Engn Phys, 1280 Main St West, Hamilton, ON L8S 4L7, CanadaMcMaster Univ, Dept Engn Phys, 1280 Main St West, Hamilton, ON L8S 4L7, Canada
机构:
Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
Liang, Gangtao
Yang, Han
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
Yang, Han
Wang, Jiajun
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
Wang, Jiajun
Shen, Shengqiang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Energy & Power Engn, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Barathula, Sreeram
Chaitanya, S. K.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Chaitanya, S. K.
Srinivasan, K.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India