An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties

被引:25
|
作者
Veses, A. [1 ]
Aznar, M. [1 ]
Callen, M. S. [1 ]
Murillo, R. [1 ]
Garcia, T. [1 ]
机构
[1] CSIC, Inst Carboquim ICB, C Miguel Luesma 4, Zaragoza 50018, Spain
关键词
Biomass; Catalytic pyrolysis; Char combustion; Auger reactor; Fluidised-bed reactor; POLYCYCLIC AROMATIC-HYDROCARBONS; BIO-OIL; COMBUSTION; EMISSIONS; PAH; GASIFICATION; CONVERSION;
D O I
10.1016/j.fuel.2016.05.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The production of upgraded bio-oils by an integrated process using a mixture of calcined limestone and sand as a heat carrier with catalytic properties was experimentally studied at pilot scale. The integrated process consisted of two main steps: biomass catalytic pyrolysis in an Auger reactor for bio-oil production and char combustion in a fluidised-bed combustor for heat carrier heating and regeneration. A temperature of 450 degrees C was fixed as an optimum value to carry out the catalytic pyrolysis step. Temperatures ranging from 700 to 800 degrees C were assessed in the char combustor. Process simulation demonstrated that solid recirculation from the combustor to the pyrolysis reactor was marginally affected in this temperature range. However, an optimum char combustion temperature of 800 degrees C was selected from an environmental point of view, since lower polyaromatic emissions were detected whilst NOx emissions were kept under the legislation limits. Under designated conditions, several pyrolysis-combustion cycles were carried out. A moderate deactivation of the catalyst by partial carbonation was found. This fact makes necessary the incorporation of a purge and an inlet of fresh heat carrier in order to maintain the bio-oil quality in the integrated process. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:430 / 437
页数:8
相关论文
共 50 条
  • [1] Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production: chemistry, catalyst and process
    Zheng, Anqing
    Jiang, Liqun
    Zhao, Zengli
    Huang, Zhen
    Zhao, Kun
    Wei, Guoqiang
    Li, Haibin
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2017, 6 (03)
  • [2] Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review
    Wang, Yi
    Akbarzadeh, Abdolhamid
    Chong, Li
    Du, Jinyu
    Tahir, Nadeem
    Awasthi, Mukesh Kumar
    CHEMOSPHERE, 2022, 297
  • [3] Production of Stable Biomass Pyrolysis Oils Using Fractional Catalytic Pyrolysis
    Agblevor, Foster A.
    Mante, O.
    Abdoulmoumine, N.
    McClung, R.
    ENERGY & FUELS, 2010, 24 (07) : 4087 - 4089
  • [4] Comparative Technical Process and Product Assessment of Catalytic and Thermal Pyrolysis of Lignocellulosic Biomass
    Patel, Akshay D.
    Zabeti, Masoud
    Seshan, K.
    Patel, Martin K.
    PROCESSES, 2020, 8 (12) : 1 - 19
  • [5] Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials
    Veses, A.
    Aznar, M.
    Lopez, J. M.
    Callen, M. S.
    Murillo, R.
    Garcia, T.
    FUEL, 2015, 141 : 17 - 22
  • [6] Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass
    Abdulkhani, Ali
    Zadeh, Zahra Echresh
    Bawa, Solomon Gajere
    Sun, Fubao
    Madadi, Meysam
    Zhang, Xueming
    Saha, Basudeb
    ENERGIES, 2023, 16 (06)
  • [7] Catalytic Strategies for Levoglucosenone Production by Pyrolysis of Cellulose and Lignocellulosic Biomass
    Kudo, Shinji
    Huang, Xin
    Asano, Shusaku
    Hayashi, Jun-ichiro
    ENERGY & FUELS, 2021, 35 (12) : 9809 - 9824
  • [8] Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass
    Bu, Quan
    Lei, Hanwu
    Ren, Shoujie
    Wang, Lu
    Zhang, Qin
    Tang, Juming
    Ruan, Roger
    BIORESOURCE TECHNOLOGY, 2012, 108 : 274 - 279
  • [9] Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass
    Zhang, Cheng
    Zhang, Z. Conrad
    CHEMICAL RECORD, 2019, 19 (09) : 2044 - 2057
  • [10] Catalytic pyrolysis of lignocellulosic and algal biomass using NaOH as a catalyst
    Ram, Shri
    Ku, Xiaoke
    Vasudev, Vikul
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2024, 18 (02): : 482 - 494