A spectral element method for modelling streamer discharges in low-temperature atmospheric-pressure plasmas

被引:4
作者
Semenov, I. L. [1 ]
Weltmann, K-D [1 ]
机构
[1] Leibniz Inst Plasma Sci & Technol, Felix Hausdorff Str 2, D-17489 Greifswald, Germany
关键词
Streamer discharge; Low-temperature plasma; Spectral element method; Hierarchical Poincar?-Steklov scheme; Discontinuous Galerkin method; DISCONTINUOUS GALERKIN METHODS; NUMERICAL-SOLUTION; ELLIPTIC PDES; DIRECT SOLVER; FRAMEWORK;
D O I
10.1016/j.jcp.2022.111378
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Streamers are ionization fronts that occur in gases at atmospheric and sub-atmospheric pressures. Numerical studies of streamers are important for practical applications but are challenging due to the multiscale nature of this discharge type. This paper introduces a spectral element method for modelling streamer discharges. The method is developed for Cartesian grids but can be extended to be used on unstructured meshes. The streamer model is based on the Poisson equation for the electric potential and the electron continuity equation. The Poisson equation is discretized via a spectral method based on the integral representation of the solution. The hierarchical Poincare - Steklov (HPS) scheme is used to solve the resulting set of equations. The electron continuity equation is solved by means of the discontinuous Galerkin spectral element method (DGSEM). The DGSEM is extended by an alternative definition of the diffusion flux. A subcell finite volume method is used to stabilize the DGSEM scheme, if required. The entire simulation scheme is validated by solving a number of test problems and reproducing the results of previous studies. Adaptive mesh refinement is used to reduce the number of unknowns. The proposed method is found to be sufficiently fast for being used in practical applications. The flexibility of the method provides an interesting opportunity to broaden the range of problems that can be addressed in numerical studies of low-temperature plasma discharges.(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 45 条
[1]   Challenges in understanding and predictive model development of plasma-assisted combustion [J].
Adamovich, Igor V. ;
Lempert, Walter R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   Comparison of six simulation codes for positive streamers in air [J].
Bagheri, B. ;
Teunissen, J. ;
Ebert, U. ;
Becker, M. M. ;
Chen, S. ;
Ducasse, O. ;
Eichwald, O. ;
Loffhagen, D. ;
Luque, A. ;
Mihailova, D. ;
Plewa, J. M. ;
van Dijk, J. ;
Yousfi, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (09)
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]  
Bell W.W., 2004, SPECIAL FUNCTIONS SC
[6]   A new one-dimensional moving mesh method applied to the simulation of streamer discharges [J].
Bessieres, D. ;
Paillol, J. ;
Bourdon, A. ;
Segur, P. ;
Marode, E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (21) :6559-6570
[7]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[8]   Performance of discontinuous Galerkin methods for elliptic PDEs [J].
Castillo, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :524-547
[9]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[10]   Dielectric Barrier Discharge Plasma Actuators for Flow Control [J].
Corke, Thomas C. ;
Enloe, C. Lon ;
Wilkinson, Stephen P. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :505-529