Adaptive Mutation Opposition-Based Particle Swarm Optimization

被引:0
|
作者
Kang, Lanlan [1 ,2 ]
Dong, Wenyong [1 ]
Li, Kangshun [3 ]
机构
[1] Wuhan Univ, Comp Sch, Wuhan 430072, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Apply Sci, Ganzhou 341000, Peoples R China
[3] South China Agr Univ, Coll Math & Informat, Guangzhou 510641, Guangdong, Peoples R China
来源
COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, (ISICA 2015) | 2016年 / 575卷
关键词
Particle swarm optimization; Adaptive mutation; Generalized opposition-based learning; Adaptive inertia weight;
D O I
10.1007/978-981-10-0356-1_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To solve the problem of premature convergence in traditional particle swarm optimization (PSO), This paper proposed a adaptive mutation opposition-based particle swarm optimization (AMOPSO). The new algorithm applies adaptive mutation selection strategy (AMS) on the basis of generalized opposition-based learning method (GOBL) and a nonlinear inertia weight (AW). GOBL strategy can provide more chances to find solutions by space transformation search and thus enhance the global exploitation ability of PSO. However, it will increase likelihood of being trapped into local optimum. In order to avoid above problem, AMS is presented to disturb the current global optimal particle and adaptively gain mutation position. This strategy is helpful to improve the exploration ability of PSO and make the algorithm more smoothly fast convergence to the global optimal solution. In order to further balance the contradiction between exploration and exploitation during its iteration process, AW strategy is introduced. Through compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that AMOPSO greatly enhance the performance of PSO in terms of solution accuracy, convergence speed and algorithm reliability.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 50 条
  • [1] Opposition-based particle swarm optimization with adaptive mutation strategy
    Wenyong Dong
    Lanlan Kang
    Wensheng Zhang
    Soft Computing, 2017, 21 : 5081 - 5090
  • [2] Opposition-based particle swarm optimization with adaptive mutation strategy
    Dong, Wenyong
    Kang, Lanlan
    Zhang, Wensheng
    SOFT COMPUTING, 2017, 21 (17) : 5081 - 5090
  • [3] Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight
    Dong W.-Y.
    Kang L.-L.
    Liu Y.-H.
    Li K.-S.
    Tongxin Xuebao/Journal on Communications, 2016, 37 (12): : 1 - 10
  • [4] Adaptive Opposition-Based Particle Swarm Optimization Algorithm and Application Research
    Ma, Y. Y.
    Jin, H. B.
    Li, H.
    Zhang, H.
    Li, J.
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 518 - 523
  • [5] Elite opposition-based particle swarm optimization
    Zhou, X.-Y. (xyzhou@whu.edu.cn), 1647, Chinese Institute of Electronics (41): : 1647 - 1652
  • [6] Uniform Opposition-Based Particle Swarm
    Kang, Lanlan
    Cui, Ying
    2018 9TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP 2018), 2018, : 81 - 85
  • [7] Opposition-Based Bare Bone Particle Swarm Optimization
    Chen, Chang-Huang
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2013), 2014, 293 : 1125 - 1132
  • [8] Probabilistic opposition-based particle swarm optimization with velocity clamping
    Farrukh Shahzad
    Sohail Masood
    Naveed Kazim Khan
    Knowledge and Information Systems, 2014, 39 : 703 - 737
  • [9] An Opposition-based Particle Swarm Optimization Algorithm for Noisy Environments
    Xiong, Caifei
    Kang, Qi
    Zhao, Zeyu
    Zhou, MengChu
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018,
  • [10] Probabilistic opposition-based particle swarm optimization with velocity clamping
    Shahzad, Farrukh
    Masood, Sohail
    Khan, Naveed Kazim
    KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 39 (03) : 703 - 737