Long Short-Term Memory Networks for Earthquake Detection in Venezuelan Regions

被引:1
作者
Mus, Sergi [1 ]
Gutierrez, Norma [1 ]
Tous, Ruben [1 ]
Otero, Beatriz [1 ]
Cruz, Leonel [1 ]
Llacer, David [1 ]
Alvarado, Leonardo [2 ]
Rojas, Otilio [3 ,4 ]
机构
[1] Univ Politecn Catalunya UPC, Barcelona, Spain
[2] Fdn Venezolana Invest Sismol, Caracas 1070, Venezuela
[3] Univ Cent Venezuela, Fac Ciencias, Caracas, Venezuela
[4] Barcelona Supercomp Ctr BSC, Barcelona, Spain
来源
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE | 2019年 / 11943卷
关键词
Earthquake detection; Neural networks; Deep learning; LSTM;
D O I
10.1007/978-3-030-37599-7_62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reliable earthquake detection and location algorithms are necessary to properly catalog and analyze the continuously growing seismic records. This paper reports the results of applying Long Short-Term Memory (LSTM) networks to single-station three-channel waveforms for P-wave earthquake detection in western and north central regions of Venezuela. Precisely, we apply our technique to study the seismicity along the dextral strike-slip Bocono and La Victoria - San Sebastian faults, with complex tectonics driven by the interactions between the South American and Caribbean plates.
引用
收藏
页码:751 / 754
页数:4
相关论文
共 6 条
[1]  
Aki K, 2002, QUANTITATIVE SEISMOL
[2]   Revised seismic history of the El Pilar fault, Northeastern Venezuela, from the Cariaco 1997 earthquake and recent preliminary paleoseismic results [J].
Audemard, Franck A. .
JOURNAL OF SEISMOLOGY, 2007, 11 (03) :311-326
[3]  
Ibrahim M. S., 2018, 2018 INT APPL COMPUT, P1, DOI DOI 10.23919/ROPACES.2018.8364097
[4]  
Kingma D. P., 2015, 3 INT C LEARN REPR 2
[5]  
Mousavi S.M., 2018, ARTIF CELL NANOMED B, P1, DOI 10.1080/ 21691401.2018.1517769
[6]   Application of real time recurrent neural network for detection of small natural earthquakes in Poland [J].
Wiszniowski, Jan ;
Plesiewicz, Beata M. ;
Trojanowski, Jacek .
ACTA GEOPHYSICA, 2014, 62 (03) :469-485