Catalytic, Computational, and Evolutionary Analysis of the D-Lactate Dehydrogenases Responsible for D-Lactic Acid Production in Lactic Acid Bacteria

被引:35
作者
Jia, Baolei [1 ,2 ]
Pu, Zhong Ji [3 ]
Tang, Ke [1 ]
Jia, Xiaomeng [2 ]
Kim, Kyung Hyun [2 ]
Liu, Xinli [1 ]
Jeon, Che Ok [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Bioengn, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Shandong, Peoples R China
[2] Chung Ang Univ, Dept Life Sci, Seoul 06974, South Korea
[3] Dalian Univ Technol, Sch Life Sci & Biotechnol, Dalian 116024, Peoples R China
基金
新加坡国家研究基金会;
关键词
D-lactate dehydrogenases; catalytic mechanism; lactic acid bacteria; evolution; LEUCONOSTOC-MESENTEROIDES; COFFEE FERMENTATION; INTEGRATIVE VIEW; LACTOBACILLUS; SEQUENCE; BINDING; DIVERSITY; INFORMATION; ENVIRONMENT; BULGARICUS;
D O I
10.1021/acs.jafc.8b02454
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
D-Lactate dehydrogenase (D-LDH) catalyzes the reversible reaction pyruvate + NADH + H+ -> lactate + NAD(+), which is a principal step in the production of D-lactate in lactic acid bacteria. In this study, we identified and characterized the major D-LDH (D-LDH1) from three D-LDHs in Leuconostoc mesenteroides, which has been extensively used in food processing. A molecular simulation study of D-LDH1 showed that the conformation changes during substrate binding. During catalysis, Tyr101 and Arg235 bind the substrates by hydrogen bonds and His296 acts as a general acid/base for proton transfer. These residues are also highly conserved and have coevolved. Point mutations proved that the substrate binding sites and catalytic site are crucial for enzyme activity. Network and phylogenetic analyses indicated that D-LDH1 and the homologues are widely distributed but are most abundant in bacteria and fungi. This study expands the understanding of the functions, catalytic mechanism, and evolution of D-LDH.
引用
收藏
页码:8371 / 8381
页数:11
相关论文
共 55 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Involvement of pectolytic micro-organisms in coffee fermentation [J].
Avallone, S ;
Brillouet, JM ;
Guyot, B ;
Olguin, E ;
Guiraud, JP .
INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2002, 37 (02) :191-198
[3]  
Avallone S, 2001, CURR MICROBIOL, V42, P252, DOI 10.1007/s002840010213
[4]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[5]   Improved Sauerkraut Production with Probiotic Strain Lactobacillus plantarum L4 and Leuconostoc mesenteroides LMG 7954 [J].
Beganovic, Jasna ;
Pavunc, Andreja Lebos ;
Gjuracic, Kresimir ;
Spoljarec, Marina ;
Suskovic, Jagoda ;
Kos, Blazenka .
JOURNAL OF FOOD SCIENCE, 2011, 76 (02) :M124-M129
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Lactic acid properties, applications and production: A review [J].
Castillo Martinez, Fabio Andres ;
Balciunas, Eduardo Marcos ;
Manuel Salgado, Jose ;
Dominguez Gonzalez, Jose Manuel ;
Converti, Attilio ;
de Souza Oliveira, Ricardo Pinheiro .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2013, 30 (01) :70-83
[8]   Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation [J].
Chun, Byung Hee ;
Kim, Kyung Hyun ;
Jeon, Hye Hee ;
Lee, Se Hee ;
Jeon, Che Ok .
SCIENTIFIC REPORTS, 2017, 7
[9]   Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification [J].
Cibik, R ;
Lepage, E ;
Tailliez, P .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 2000, 23 (02) :267-278
[10]   Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment [J].
Dhoke, Gaurao V. ;
Loderer, Christoph ;
Davari, Mehdi D. ;
Ansorge-Schumacher, Marion ;
Schwaneberg, Ulrich ;
Bocola, Marco .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2015, 29 (11) :1057-1069