Controllable Graphene Wrinkle for a High-Performance Flexible Pressure Sensor

被引:173
作者
Tang, Xinyue [1 ,2 ]
Yang, Weidong [3 ]
Yin, Shuran [1 ]
Tai, Guojun [1 ]
Su, Min [1 ]
Yang, Jin [4 ]
Shi, Haofei [1 ]
Wei, Dapeng [1 ,2 ]
Yang, Jun [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[4] Chongqing Univ, Dept Optoelect Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
controllable wrinkle; graphene-nanowalls; flexible piezoresistivity sensor; E-skin; robotics; HIGH-SENSITIVITY; COMPOSITE; FILMS; NANOGENERATORS; ARRAYS;
D O I
10.1021/acsami.0c22784
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible pressure sensors have aroused tremendous attention, owing to their broad applications in healthcare, robotics, and prosthetics. So far, it remains a critical challenge to develop low-cost and controllable microstructures for flexible pressure sensors. Herein, a high-sensitivity and low-cost flexible piezoresistive sensor was developed by combining a controllable graphene-nanowalls (GNWs) wrinkle and a polydimethylsiloxane (PDMS) elastomer. For the GNWs-PDMS bilayer, the vertically grown GNWs film can effectively improve the interface strength and form delamination-free conformal wrinkles. More importantly, a controllable microstructure can be easily tuned through the thermal wrinkling method. The wrinkled graphene-nanowalls (WG) piezoresistive sensor has a high sensitivity (S = 59.0 kPa(-1) for the 0-2 kPa region and S = 4.8 kPa(-1) for the 2-20 kPa region), a fast response speed (<6.9 ms), and a low limit of detection (LOD) of 2 mg (similar to 0.2 Pa). The finite element method was used to analyze the working mechanism of the sensor, which revealed that the periods of the wrinkles play a dominant role in the performances of the sensors. These prominent merits enable wrinkled graphene sensors to successfully detect various signals from a weak stimulus to large pressures, for example, the detection of weak gas and plantar pressure. Furthermore, object manipulation, tactile imaging, and braille recognition applications have been demonstrated, showing their great potential in prosthetics limbs and intelligent robotics.
引用
收藏
页码:20448 / 20458
页数:11
相关论文
共 50 条
[1]   Thermally induced surface instabilities in polymer light emitting diodes [J].
Akande, Wali O. ;
Akogwu, Onobu ;
Tong, Tiffany ;
Soboyejo, Wole .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (02)
[2]   Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity [J].
Bai, Ningning ;
Wang, Liu ;
Wang, Qi ;
Deng, Jue ;
Wang, Yan ;
Lu, Peng ;
Huang, Jun ;
Li, Gang ;
Zhang, Yuan ;
Yang, Junlong ;
Xie, Kewei ;
Zhao, Xuanhe ;
Guo, Chuan Fei .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[4]   Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture [J].
Cao, Yudong ;
Li, Tie ;
Gu, Yang ;
Luo, Hui ;
Wang, Shuqi ;
Zhang, Ting .
SMALL, 2018, 14 (16)
[5]   Stretchable Graphene Pressure Sensors with Shar-Pei-like Hierarchical Wrinkles for Collision-Aware Surgical Robotics [J].
Chang, Ting-Hsiang ;
Tian, Yuan ;
Li, Changsheng ;
Gu, Xiaoyi ;
Li, Kerui ;
Yang, Haitao ;
Sanghani, Parita ;
Lim, Chwee Ming ;
Ren, Hongliang ;
Chen, Po-Yen .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) :10226-10236
[6]   Wrinkling instabilities in polymer films and their applications [J].
Chen, Chi-Mon ;
Yang, Shu .
POLYMER INTERNATIONAL, 2012, 61 (07) :1041-1047
[7]   Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane [J].
Chen, Wenjun ;
Gui, Xuchun ;
Liang, Binghao ;
Yang, Rongliang ;
Zheng, Yongjia ;
Zhao, Chengchun ;
Li, Xinming ;
Zhu, Hai ;
Tang, Zikang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) :24111-24117
[8]   Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures [J].
Chen, Zefeng ;
Wang, Zhao ;
Li, Xinming ;
Lin, Yuxuan ;
Luo, Ningqi ;
Long, Mingzhu ;
Zhao, Ni ;
Xu, Jian-Bin .
ACS NANO, 2017, 11 (05) :4507-4513
[9]   Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array [J].
Choong, Chwee-Lin ;
Shim, Mun-Bo ;
Lee, Byoung-Sun ;
Jeon, Sanghun ;
Ko, Dong-Su ;
Kang, Tae-Hyung ;
Bae, Jihyun ;
Lee, Sung Hoon ;
Byun, Kyung-Eun ;
Im, Jungkyun ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Park, Jong-Jin ;
Chung, U-In .
ADVANCED MATERIALS, 2014, 26 (21) :3451-3458
[10]   Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care [J].
Chung, Ha Uk ;
Kim, Bong Hoon ;
Lee, Jong Yoon ;
Lee, Jungyup ;
Xie, Zhaoqian ;
Ibler, Erin M. ;
Lee, KunHyuck ;
Banks, Anthony ;
Jeong, Ji Yoon ;
Kim, Jongwon ;
Ogle, Christopher ;
Grande, Dominic ;
Yu, Yongjoon ;
Jang, Hokyung ;
Assem, Pourya ;
Ryu, Dennis ;
Kwak, Jean Won ;
Namkoong, Myeong ;
Park, Jun Bin ;
Lee, Yechan ;
Kim, Do Hoon ;
Ryu, Arin ;
Jeong, Jaeseok ;
You, Kevin ;
Ji, Bowen ;
Liu, Zhuangjian ;
Huo, Qingze ;
Feng, Xue ;
Deng, Yujun ;
Xu, Yeshou ;
Jang, Kyung-In ;
Kim, Jeonghyun ;
Zhang, Yihui ;
Ghaffari, Roozbeh ;
Rand, Casey M. ;
Schau, Molly ;
Hamvas, Aaron ;
Weese-Mayer, Debra E. ;
Huang, Yonggang ;
Lee, Seung Min ;
Lee, Chi Hwan ;
Shanbhag, Naresh R. ;
Paller, Amy S. ;
Xu, Shuai ;
Rogers, John A. .
SCIENCE, 2019, 363 (6430) :947-+