Variations of thermoelectric properties of Mg2.2Si1-ySny-0.013Sb0.013 materials with different Si/Sn ratios

被引:5
作者
Gao, Hong Li [1 ]
Zhu, Tiejun [2 ,3 ]
Zhao, Xinbing [2 ,3 ]
Deng, Yuan [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Thermoelectric; Mg2Si1-xSnx solid solutions; Electronic transport; Sb doping; SOLID-SOLUTIONS; PERFORMANCE; FIGURE; MERIT; NANOSTRUCTURES; EFFICIENCY; PBTE; MG;
D O I
10.1016/j.jssc.2014.08.026
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Mg2Si-Mg2Sn solid solutions are a promising class of thermoelectric materials. Mg2.2Si1-ySny-0.013Sb0.013 compounds with different Si/Sn ratios were prepared by B2O3 "flux" method followed by hot-pressing. The effect of Si/Sn ratio on the thermoelectric properties of the Mg2Si-Mg2Sn solid solutions at a fixed Sb doping level were measured in the temperature range 300-760 K. With the increase of Sn content (0.3 <= y <= 0.7), power factors are improved and lattice thermal conductivity decreased. Band convergence induced by Si/Sn ratio leads to enhanced effective mass and the materials parameter beta which qualifies a kind of thermoelectric material is improved evidently. A maximum ZT of similar to 1.1 at similar to 760 K was achieved for the Mg2.2Si0.3Sn0.7-0.013Sb0.013 sample arising from a high power factor of similar to 4 x 10(-3) W m(-1) K-2 and a low lattice thermal conductivity of similar to 1.6 W m(-1) K-1 at similar to 760 K. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 39 条
[1]   Ab initio studies of electronic structure, phonon modes, and elastic properties of Mg2Si [J].
Baranek, P ;
Schamps, J ;
Noiret, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (45) :9147-9152
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]  
Biswas K, 2011, NAT CHEM, V3, P160, DOI [10.1038/nchem.955, 10.1038/NCHEM.955]
[4]   Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide [J].
Bux, Sabah K. ;
Yeung, Michael T. ;
Toberer, Eric S. ;
Snyder, G. Jeffrey ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12259-12266
[5]   Facile synthesis of preferential Bi0.5Sb1.5Te3.0 nanolayered thin films with high power factor by the controllable layer thickness [J].
Cao, Lili ;
Wang, Yao ;
Deng, Yuan ;
Gao, Hongli ;
Luo, Bingwei ;
Zhu, Wei .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (11)
[6]   Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J].
Caylor, JC ;
Coonley, K ;
Stuart, J ;
Colpitts, T ;
Venkatasubramanian, R .
APPLIED PHYSICS LETTERS, 2005, 87 (02)
[7]   Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1-xSnx (0.1 ≤ x ≤ 0.8) solid solutions by flux method [J].
Chen, Luxin ;
Jiang, Guangyu ;
Chen, Yi ;
Du, Zhengliang ;
Zhao, Xinbing ;
Zhu, Tiejun ;
He, Jian ;
Tritt, Terry M. .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (24) :3038-3043
[8]   Effect of vacancies on the thermoelectric properties of Mg2Si1-xSbx (0 ≤ x ≤ 0.1) [J].
Dasgupta, T. ;
Stiewe, C. ;
Hassdorf, R. ;
Zhou, A. J. ;
Boettcher, L. ;
Mueller, E. .
PHYSICAL REVIEW B, 2011, 83 (23)
[9]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[10]   Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions [J].
Du, Zhengliang ;
Zhu, Tiejun ;
Chen, Yi ;
He, Jian ;
Gao, Hongli ;
Jiang, Guangyu ;
Tritt, Terry M. ;
Zhao, Xinbing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (14) :6838-6844