Iwasawa invariants for elliptic curves over Zp -extensions and Kida's formula

被引:3
|
作者
Kundu, Debanjana [1 ]
Ray, Anwesh [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
lambda-invariant; Kida's formula; ANTICYCLOTOMIC MU-INVARIANTS; ADIC L-FUNCTIONS; SELMER GROUPS; ABELIAN-VARIETIES; ANALOG; VALUES; CONJECTURE; POINTS;
D O I
10.1515/forum-2021-0203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at studying the Iwasawa lambda-invariant of the p-primary Selmer group. We study the growth behavior of p-primary Selmer groups in p-power degree extensions over non-cyclotomic Z(p)-extensions of a number field. We prove a generalization of Kida's formula in such a case. Unlike the cyclotomic Z(p)-extension, where all primes are finitely decomposed, in the Z(p)-extensions we consider primes may be infinitely decomposed. In the second part of this paper, we study the relationship of Iwasawa invariants with respect to congruences, obtaining refinements of the results of Greenberg, Vatsal and Kidwell. As an application, we provide an algorithm for constructing elliptic curves with large anticyclotomic lambda-invariant. Our results are illustrated by explicit computation.
引用
收藏
页码:945 / 967
页数:23
相关论文
共 25 条
  • [1] Statistics for anticyclotomic Iwasawa invariants of elliptic curves
    Hatley, Jeffrey
    Kundu, Debanjana
    Ray, Anwesh
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [2] An analogue of Kida's formula for elliptic curves with additive reduction
    Ray, Anwesh
    Shingavekar, Pratiksha
    RAMANUJAN JOURNAL, 2024, 65 (02) : 857 - 883
  • [3] RANKS OF ELLIPTIC CURVES OVER Zp2-EXTENSIONS
    Lei, Antonio
    Sprung, Florian
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 183 - 206
  • [4] STATISTICS FOR IWASAWA INVARIANTS OF ELLIPTIC CURVES
    Kundu, Debanjana
    Ray, Anwesh
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 7945 - 7965
  • [5] Statistics for Iwasawa invariants of elliptic curves, II
    Kundu, Debanjana
    Ray, Anwesh
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (04) : 1099 - 1124
  • [6] A note on Iwasawa µ-invariants of elliptic curves
    Rupam Barman
    Anupam Saikia
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 399 - 407
  • [7] A note on Iwasawa Aμ-invariants of elliptic curves
    Barman, Rupam
    Saikia, Anupam
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03): : 399 - 407
  • [8] Iwasawa Theory of elliptic curves at sup ersingular primes over higher rank Iwasawa extensions
    Kim, Byoung Du
    JOURNAL OF NUMBER THEORY, 2025, 271 : 189 - 215
  • [9] An alternative approach to Kida and Ferrero's computations of Iwasawa λ-invariants
    Schettler, Jordan
    JOURNAL OF NUMBER THEORY, 2014, 138 : 84 - 96
  • [10] Torsion groups of elliptic curves over the Zp-extensions of Q
    Chou, Michael
    Daniels, Harris B.
    Krijan, Ivan
    Najman, Filip
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 99 - 123