On the stability of thermosolutal rotating porous convection subject to a lack of thermal equilibrium

被引:0
作者
Shivakumara, I. S. [1 ]
Shankar, B. M. [2 ]
Kumar, S. B. Naveen [2 ]
机构
[1] Bangalore Univ, Dept Math, Bengaluru 560056, India
[2] PES Univ, Dept Math, Bengaluru 560085, India
关键词
Thermosolutal convection; Local thermal nonequilibrium; Porous medium; Rotation; Stability; DOUBLE-DIFFUSIVE CONVECTION; GRAVITY-DRIVEN CONVECTION; DARCY-BENARD INSTABILITY; NONEQUILIBRIUM; LAYER; ONSET; FLUID; MEDIA;
D O I
10.1016/j.icheatmasstransfer.2022.105928
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates the linear and weakly nonlinear stability of thermosolutal rotating porous convection subject to a lack of thermal equilibrium. Being an example of a triply diffusive fluid system in porous media with multiparameters, some novel results on the linear instability are delineated for a few isolated cases. The otherwise stabilizing factors such as stabilizing solute concentration and rotation are shown to destabilize the system under certain parameters space. Besides, the existence of a completely detached closed convex oscillatory neutral curve from that of the stationary neutral curve is uncovered indicating the requirement of three critical thermal Darcy-Rayleigh numbers to identify the linear instability criteria instead of the usual single critical value. The multivalued nature of the stability boundaries for the case of completely detached oscillatory neutral curves is displayed. The co-dimension-2 points are found through a stability map with the demarcation of stationary and oscillatory convective regions in a plane of Darcy-Taylor and scaled Vadasz numbers. Weakly nonlinear stability theory is carried out for a stationary case by using a modified multi-scale method and thereby the complex Ginzburg-Landau amplitude equation is derived identifying the pitchfork bifurcation. Moreover, heat and mass transport are quantified in terms of average thermal and solute Nusselt numbers, respectively.
引用
收藏
页数:18
相关论文
共 48 条
[1]  
Altawallbeh A. A., 2018, Journal of Porous Media, V21, P1395
[2]  
[Anonymous], 2018, HDB THERMAL SCI ENG
[3]   Onset of Darcy-Benard convection using a thermal non-equilibrium model [J].
Banu, N ;
Rees, DAS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) :2221-2228
[4]   Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer [J].
Barletta, A. ;
Rees, D. A. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 83 :327-336
[5]   Local thermal non-equilibrium effects in the Darcy-Benard instability with isoflux boundary conditions [J].
Barletta, A. ;
Rees, D. A. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (1-3) :384-394
[6]   The onset of thermal convection in anisotropic and rotating bidisperse porous media [J].
Capone, F. ;
Gentile, M. ;
Massa, G. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04)
[7]   Sharp stability results in LTNE rotating anisotropic porous layer [J].
Capone, F. ;
Gentile, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 134 :661-664
[8]   Local thermal non-equilibrium effects in the Darcy-Benard instability of a porous layer heated from below by a uniform flux [J].
Celli, M. ;
Barletta, A. ;
Storesletten, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 67 :902-912
[9]   Stability analysis of thermosolutal convection in a horizontal porous layer using a thermal non-equilibrium model [J].
Chen, Xi ;
Wang, Shaowei ;
Tao, Jianjun ;
Tan, Wenchang .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) :78-87
[10]   Impact of Thermal Non-equilibrium on Weak Nonlinear Rotating Porous Convection [J].
Dayananda, R. N. ;
Shivakumara, I. S. .
TRANSPORT IN POROUS MEDIA, 2019, 130 (03) :819-845