A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time

被引:87
作者
Mantica, Carlo Alberto [1 ,2 ]
Molinari, Luca Guido [1 ,3 ]
De, Uday Chand [4 ]
机构
[1] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[2] IIS Lagrange, Via L Modignani 65, I-20161 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
关键词
CURVATURE; MANIFOLDS; GEOMETRY;
D O I
10.1063/1.4941942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A perfect-fluid space-time of dimension n >= 4, with (1) irrotational velocity vector field and (2) null divergence of the Weyl tensor, is a generalised Robertson-Walker space-time with an Einstein fiber. Condition (1) is verified whenever pressure and energy density are related by an equation of state. The contraction of the Weyl tensor with the velocity vector field is zero. Conversely, a generalized Robertson-Walker space-time with null divergence of the Weyl tensor is a perfect-fluid space-time. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 36 条
[21]   Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension [J].
Hervik, Sigbjorn ;
Ortaggio, Marcello ;
Wylleman, Lode .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (16)
[22]   Weakly Z-symmetric manifolds [J].
Mantica, C. A. ;
Molinari, L. G. .
ACTA MATHEMATICA HUNGARICA, 2012, 135 (1-2) :80-96
[23]   PSEUDO Z SYMMETRIC RIEMANNIAN MANIFOLDS WITH HARMONIC CURVATURE TENSORS [J].
Mantica, Carlo Alberto ;
Suh, Young Jin .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (01)
[24]  
ONeil B., 1983, Pure and Applied Mathematics
[25]   Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes [J].
Romero, Alfonso ;
Rubio, Rafael M. ;
Salamanca, Juan J. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (11)
[26]   On the geometry of generalized Robertson-Walker spacetimes:: curvature and Killing fields [J].
Sánchez, M .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (01) :1-15
[27]   On the geometry of generalized Robertson-Walker spacetimes: Geodesics [J].
Sanchez, M .
GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (06) :915-932
[28]   PROPER CONFORMAL-SYMMETRIES OF SPACE-TIMES WITH DIVERGENCE-FREE WEYL CONFORMAL TENSOR [J].
SHARMA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) :3582-3587
[29]  
Shepley L. C., 1967, Commun. Math. Phys., V5, P237
[30]  
Sinyukov N.S., 1979, Geodesic Mappings of Riemannian Spaces