A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time

被引:81
作者
Mantica, Carlo Alberto [1 ,2 ]
Molinari, Luca Guido [1 ,3 ]
De, Uday Chand [4 ]
机构
[1] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[2] IIS Lagrange, Via L Modignani 65, I-20161 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
关键词
CURVATURE; MANIFOLDS; GEOMETRY;
D O I
10.1063/1.4941942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A perfect-fluid space-time of dimension n >= 4, with (1) irrotational velocity vector field and (2) null divergence of the Weyl tensor, is a generalised Robertson-Walker space-time with an Einstein fiber. Condition (1) is verified whenever pressure and energy density are related by an equation of state. The contraction of the Weyl tensor with the velocity vector field is zero. Conversely, a generalized Robertson-Walker space-time with null divergence of the Weyl tensor is a perfect-fluid space-time. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 36 条
  • [1] UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES
    ALIAS, LJ
    ROMERO, A
    SANCHEZ, M
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) : 71 - 84
  • [2] [Anonymous], 1990, TENSOR
  • [3] [Anonymous], P C DIFF GEOM DEBR J
  • [4] [Anonymous], 1994, Soo-chow J. Math.
  • [5] [Anonymous], 2000, Balk. J. of Geom. and its Appl.
  • [6] [Anonymous], 1988, TENSORS DIFFERENTIAL
  • [7] [Anonymous], 2003, CAMBRIDGE MONOGRAPHS, DOI DOI 10.1017/CBO9780511535185
  • [8] On generalized Robertson-Walker spacetimes satisfying some curvature condition
    Arslan, Kadri
    Deszcz, Ryszard
    Ezentas, Ridvan
    Hotlos, Marian
    Murathan, Cengizhan
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (02) : 353 - 373
  • [9] Beem J. K., 1996, Monographs and Textbooks in Pure and Applied Math-ematics, V202
  • [10] Locally conformally flat Lorentzian quasi-Einstein manifolds
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (02): : 175 - 186