Forest Biomass Retrieval From L-Band SAR Using Tomographic Ground Backscatter Removal

被引:38
|
作者
Blomberg, Erik [1 ]
Ferro-Famil, Laurent [2 ]
Soja, Maciej J. [1 ]
Ulander, Lars M. H. [1 ]
Tebaldini, Stefano [3 ]
机构
[1] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[2] Univ Rennes 1, F-35042 Rennes, France
[3] Politecn Milan, I-20133 Milan, Italy
关键词
Biomass; boreal forest; L-band; Satellites for Observation and Communications-Companion Satellite (SAOCOM-CS); tomography; INTENSITY; MISSION; SINGLE;
D O I
10.1109/LGRS.2018.2819884
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A tomographic synthetic aperture radar (TomoSAR) represents a possible route to improved retrievals of forest parameters. Simulated orbital L-band TomoSAR data corresponding to the proposed Satellites for Observation and Communications-Companion Satellite (SAOCOM-CS) mission (1.275 CHz) are evaluated for retrieval of above-ground biomass in boreal forest. L-hand data and biomass measurements, collected at the Krycklan test site in northern Sweden as part of the BioSAR 2008 campaign, are used to compare biomass retrievals from SAOCOM-CS to those based on SAOCOM SAR data. Both data sets are in turn compared with the corresponding airborne case, as represented by experimental airborne SAR through processing of the original SAR data. TomoSAR retrievals use a model involving a logarithmic transform of the volumetric backscatter intensity, I-vol, defined as the total backscatter originating between 10 and 30 m above ground. SAR retrievals are obtained with slope-compensated intensity gamma(0) using the same model. It is concluded that tomography using SAOCOM-CS represents an improvement over an airborne SAR imagery, resulting in biomass retrievals from a single polarization (HH) having a 26%-30% root-mean-square error with a little to no impact from the look direction or the local topography.
引用
收藏
页码:1030 / 1034
页数:5
相关论文
共 50 条
  • [21] Multitemporal Fluctuations in L-Band Backscatter From a Japanese Forest
    Watanabe, Manabu
    Motohka, Takeshi
    Shiraishi, Tomohiro
    Thapa, Rajesh Bahadur
    Yonezawa, Chinatsu
    Nakamura, Kazuki
    Shimada, Masanobu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (11): : 5799 - 5813
  • [22] MEASUREMENTS OF FOREST BIOMASS CHANGE USING L- AND P-BAND SAR BACKSCATTER
    Huuva, Ivan
    Fransson, Johan E. S.
    Persson, Henrik J.
    Wallerman, Jorgen
    Ulander, Lars M. H.
    Blomberg, Erik
    Soja, Maciej J.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5818 - 5821
  • [23] L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark
    Joshi, Neha P.
    Mitchard, Edward T. A.
    Schumacher, Johannes
    Johannsen, Vivian K.
    Saatchi, Sassan
    Fensholt, Rasmus
    REMOTE SENSING, 2015, 7 (04) : 4442 - 4472
  • [24] Estimating Biomass in Logged Tropical Forest Using L-Band SAR (PALSAR) Data and GIS
    Omar, Hamdan
    Ismail, Mohd Hasmadi
    Hamzah, Khali Aziz
    Shafri, Helmi Zulhaidi Mohd
    Kamarudin, Norizah
    SAINS MALAYSIANA, 2015, 44 (08): : 1085 - 1093
  • [25] PREDICTION OF HEMI-BOREAL FOREST BIOMASS CHANGE USING ALOS-2 PALSAR-2 L-BAND SAR BACKSCATTER
    Huuva, Ivan
    Persson, Henrik J.
    Wallerman, Jorgen
    Ulander, Lars M. H.
    Fransson, Johan E. S.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3326 - 3329
  • [26] Sensitivity of P- and L-Band SAR Tomography to Above-Ground Biomass in a Hilly Temperate Forest
    Bennet, Patrik J.
    Ulander, Lars M. H.
    DAlessandro, Mauro Mariotti
    Tebaldini, Stefano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] REMOTELY SENSED L-BAND SAR DATA FOR TROPICAL FOREST BIOMASS ESTIMATION
    Hamdan, O.
    Aziz, H. Khali
    Abd Rahman, K.
    JOURNAL OF TROPICAL FOREST SCIENCE, 2011, 23 (03) : 318 - 327
  • [28] Gaussian process regression-based forest above ground biomass retrieval from simulated L-band NISAR data
    Ghosh, Swarnendu Sekhar
    Khati, Unmesh
    Kumar, Sandeep
    Bhattacharya, Avik
    Lavalle, Marco
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 118
  • [29] Forest classification and height indicators using L-band SAR
    Wallington, ED
    Woodhouse, IH
    Suárez-Mínguez, JC
    REMOTE SENSING IN TRANSITION, 2004, : 167 - 172
  • [30] FOREST ABOVE GROUND BIOMASS ESTIMATION AND FOREST/NON-FOREST CLASSIFICATION FOR ODISHA, INDIA, USING L-BAND SYNTHETIC APERTURE RADAR (SAR) DATA
    Suresh, M.
    Chand, T. R. Kiran
    Fararoda, Rakesh
    Jha, C. S.
    Dadhwal, V. K.
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 651 - 658