Energy efficient dry reforming process using low temperature arcs

被引:16
作者
Dinh, Duy Khoe [1 ,2 ]
Choi, Seongil [1 ,2 ]
Lee, Dae Hoon [1 ,2 ]
Jo, Sungkwon [2 ]
Kim, Kwan-Tae [2 ]
Song, Young-Hoon [1 ,2 ]
机构
[1] Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[2] Korea Inst Machinery & Mat, 156 Gajeongbuk Ro, Daejeon 34103, South Korea
基金
新加坡国家研究基金会;
关键词
dry reforming of methane; energy cost; plasma arc-jet; rotating arc; SYNGAS PRODUCTION; PARTIAL OXIDATION; MICROWAVE PLASMA; METHANE; CATALYSTS; CO2; OPTIMIZATION; CONVERSION; DECOMPOSITION; TECHNOLOGIES;
D O I
10.1002/ppap.201700203
中图分类号
O59 [应用物理学];
学科分类号
摘要
An energy efficient dry reforming process using a rotating arc plasma is introduced. By virtue of an elongated stable arc state in a rotating arc, a thermal energy efficiency of up to 76% and a reduction of the process costs to 9.4 and 5.52kJL(-1) for reactant conversion and syngas production, respectively, are realized. The effects of the CH4/CO2 molar ratio on the energy cost were also investigated. The lowest energy costs were obtained at molar ratios of 3/7 and 1 for the reactant conversion and syngas production, respectively. Moreover, we found that a specific energy input (SEI) of 11.2kJL(-1) could maximize the conversion of both CO2 and CH4 to almost 100%. The results presented herein successfully demonstrate the commercial feasibility of using low-temperature arcs for the dry reforming of methane. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 50 条
[41]   Dry Reforming of Methane with Carbon Dioxide Using Pulsed DC Arc Plasma at Atmospheric Pressure [J].
Yan, B. H. ;
Wang, Q. ;
Jin, Y. ;
Cheng, Y. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2010, 30 (02) :257-266
[42]   Effects of calcination and activation temperature on dry reforming catalysts [J].
Al-Fatesh, A. S. A. ;
Fakeeha, A. H. .
JOURNAL OF SAUDI CHEMICAL SOCIETY, 2012, 16 (01) :55-61
[43]   Utilization of Greenhouse Gases for Syngas Production by Dry Reforming Process Using Reduced BaNiO3 Perovskite as a Catalyst [J].
Ahmad, Naushad ;
Wahab, Rizwan ;
Manoharadas, Salim ;
Alrayes, Basel F. ;
Alharthi, Fahad .
SUSTAINABILITY, 2021, 13 (24)
[44]   Energy intensity in applying low-temperature chemical looping in steam reforming [J].
Sazon, Thor Alexis ;
Shimizu, Teruyuki ;
Fukushima, Yasuhiro ;
Adschiri, Tadafumi ;
Kikuchi, Yasunori .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 159 :850-861
[45]   Stable Performance of Ni Catalysts in the Dry Reforming of Methane at High Temperatures for the Efficient Conversion of CO2 into Syngas [J].
Mette, Katharina ;
Kuehl, Stefanie ;
Duedder, Hendrik ;
Kaehler, Kevin ;
Tarasov, Andrey ;
Muhler, Martin ;
Behrens, Malte .
CHEMCATCHEM, 2014, 6 (01) :100-104
[46]   Modeling of dry reforming of methane for hydrogen production at low temperatures using membrane reactor [J].
Lu, Cheng-Yang ;
Chein, Rei-Yu .
INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2021, 19 (03) :221-237
[47]   Hydrogen production and temperature control for DME autothermal reforming process [J].
Zhang, Tie-qing ;
Malik, Fawad Rahim ;
Jung, Seunghun ;
Kim, Young-Bae .
ENERGY, 2022, 239
[48]   Development of Highly Stable Low Ni Content Catalyst for Dry Reforming of CH4-Rich Feedstocks [J].
Quan Luu Manh Ha ;
Lund, Henrik ;
Kreyenschulte, Carsten ;
Bartling, Stephan ;
Atia, Hanan ;
Than Huyen Vuong ;
Wohlrab, Sebastian ;
Armbruster, Udo .
CHEMCATCHEM, 2020, 12 (06) :1562-1568
[49]   Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane [J].
Quan Luu Manh Ha ;
Armbruster, Udo ;
Atia, Hanan ;
Schneider, Matthias ;
Lund, Henrik ;
Agostini, Giovanni ;
Radnik, Joerg ;
Huyen Thanh Vuong ;
Martin, Andreas .
CATALYSTS, 2017, 7 (05)
[50]   Optimal Process Operation for Biogas Reforming to Methanol: Effects of Dry Reforming and Biogas Composition [J].
Hernandez, Borja ;
Martin, Mariano .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (23) :6677-6685