Energy efficient dry reforming process using low temperature arcs

被引:16
作者
Dinh, Duy Khoe [1 ,2 ]
Choi, Seongil [1 ,2 ]
Lee, Dae Hoon [1 ,2 ]
Jo, Sungkwon [2 ]
Kim, Kwan-Tae [2 ]
Song, Young-Hoon [1 ,2 ]
机构
[1] Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[2] Korea Inst Machinery & Mat, 156 Gajeongbuk Ro, Daejeon 34103, South Korea
基金
新加坡国家研究基金会;
关键词
dry reforming of methane; energy cost; plasma arc-jet; rotating arc; SYNGAS PRODUCTION; PARTIAL OXIDATION; MICROWAVE PLASMA; METHANE; CATALYSTS; CO2; OPTIMIZATION; CONVERSION; DECOMPOSITION; TECHNOLOGIES;
D O I
10.1002/ppap.201700203
中图分类号
O59 [应用物理学];
学科分类号
摘要
An energy efficient dry reforming process using a rotating arc plasma is introduced. By virtue of an elongated stable arc state in a rotating arc, a thermal energy efficiency of up to 76% and a reduction of the process costs to 9.4 and 5.52kJL(-1) for reactant conversion and syngas production, respectively, are realized. The effects of the CH4/CO2 molar ratio on the energy cost were also investigated. The lowest energy costs were obtained at molar ratios of 3/7 and 1 for the reactant conversion and syngas production, respectively. Moreover, we found that a specific energy input (SEI) of 11.2kJL(-1) could maximize the conversion of both CO2 and CH4 to almost 100%. The results presented herein successfully demonstrate the commercial feasibility of using low-temperature arcs for the dry reforming of methane. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 50 条
[21]   Enhancing hydrogen production by dry reforming process with strontium promoter [J].
Ibrahim, Ahmed A. ;
Fakeeha, Anis H. ;
Al-Fatesh, Ahmed S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (04) :1680-1687
[22]   Radiation-induced dry reforming: A negative emission process [J].
Ramirez-Corredores, M. M. ;
Rollins, Harry W. ;
Morco, Ryan P. ;
Zarzana, Christopher A. ;
Diaz, Luis A. .
JOURNAL OF CLEANER PRODUCTION, 2023, 429
[23]   Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights [J].
Das, S. ;
Ashok, J. ;
Bian, Z. ;
Dewangan, N. ;
Wai, M. H. ;
Du, Y. ;
Borgna, A. ;
Hidajat, K. ;
Kawi, S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 230 :220-236
[24]   Hydrogen production via chemical looping dry reforming of methane: Process modeling and systems analysis [J].
Mantripragada, Hari C. ;
Veser, Gotz .
AICHE JOURNAL, 2022, 68 (05)
[25]   Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts [J].
Monteiro, Wesley F. ;
Vieira, Michele O. ;
Calgaro, Camila O. ;
Perez-Lopez, Oscar W. ;
Ligabue, Rosane A. .
FUEL, 2019, 253 :713-721
[26]   Process and catalyst improvements for the dry reforming of methane [J].
Chaudhary, Puneet Kumar ;
Deo, Goutam .
CHEMICAL ENGINEERING SCIENCE, 2023, 276
[27]   Process optimization of DBD plasma dry reforming of methane over Ni/La2O3-MgAl2O4 using multiple response surface methodology [J].
Khoja, Asif Hussain ;
Tahir, Muhammad ;
Amin, Nor Aishah Saidina .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) :11774-11787
[28]   La-Ce binary oxide catalysts for low-temperature dry reforming [J].
Zhou, Rufan ;
Mohamedali, Mohanned ;
Ren, Yuxuan ;
Lu, Qingye ;
Mahinpey, Nader .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (89) :34766-34782
[29]   Asymmetric Porous Catalyst Structures for Low-Temperature Photocatalytic Dry Reforming of Methane [J].
Moore, William ;
Shoji, Shusaku ;
Tsaur, Lieihn ;
Yu, Fei ;
Thedford, R. Paxton ;
Tait, William R. ;
Riasi, M. Sadegh ;
Saha, Aniruddha ;
Hur, Kayhun ;
Reese, Austin ;
Kozbek, Ali Y. ;
Hesse, Sarah A. ;
Gruner, Sol M. ;
Yeghiazarian, Lilit ;
Sobhani, Sadaf ;
Suntivich, Jin ;
Wiesner, Ulrich B. .
ACS NANO, 2025, 19 (26) :23817-23828
[30]   Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ZrO2-La2O3 catalyst at low temperature [J].
Soria, M. A. ;
Mateos-Pedrero, C. ;
Guerrero-Ruiz, A. ;
Rodriguez-Ramos, I. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (23) :15212-15220