Energy efficient dry reforming process using low temperature arcs

被引:16
作者
Dinh, Duy Khoe [1 ,2 ]
Choi, Seongil [1 ,2 ]
Lee, Dae Hoon [1 ,2 ]
Jo, Sungkwon [2 ]
Kim, Kwan-Tae [2 ]
Song, Young-Hoon [1 ,2 ]
机构
[1] Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[2] Korea Inst Machinery & Mat, 156 Gajeongbuk Ro, Daejeon 34103, South Korea
基金
新加坡国家研究基金会;
关键词
dry reforming of methane; energy cost; plasma arc-jet; rotating arc; SYNGAS PRODUCTION; PARTIAL OXIDATION; MICROWAVE PLASMA; METHANE; CATALYSTS; CO2; OPTIMIZATION; CONVERSION; DECOMPOSITION; TECHNOLOGIES;
D O I
10.1002/ppap.201700203
中图分类号
O59 [应用物理学];
学科分类号
摘要
An energy efficient dry reforming process using a rotating arc plasma is introduced. By virtue of an elongated stable arc state in a rotating arc, a thermal energy efficiency of up to 76% and a reduction of the process costs to 9.4 and 5.52kJL(-1) for reactant conversion and syngas production, respectively, are realized. The effects of the CH4/CO2 molar ratio on the energy cost were also investigated. The lowest energy costs were obtained at molar ratios of 3/7 and 1 for the reactant conversion and syngas production, respectively. Moreover, we found that a specific energy input (SEI) of 11.2kJL(-1) could maximize the conversion of both CO2 and CH4 to almost 100%. The results presented herein successfully demonstrate the commercial feasibility of using low-temperature arcs for the dry reforming of methane. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 45 条
[1]  
Bossel U., 2003, P FUEL CELL FOR
[2]   A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming [J].
Challiwala, M. S. ;
Ghouri, M. M. ;
Linke, P. ;
El-Halwagi, M. M. ;
Elbashir, N. O. .
JOURNAL OF CO2 UTILIZATION, 2017, 17 :99-111
[3]   Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure [J].
Chun, Se Min ;
Hong, Yong Cheol ;
Choi, Dae Hyun .
JOURNAL OF CO2 UTILIZATION, 2017, 19 :221-229
[4]   Partial oxidation of diesel fuel by plasma - Kinetic aspects of the reaction [J].
Dinh, Duy Khoe ;
Kang, Hee Seok ;
Jo, Sungkwon ;
Lee, Dae Hoon ;
Song, Young-Hoon .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (36) :22756-22764
[5]   Carbon-structure affecting catalytic carbon dioxide reforming of methane reaction over Ni-carbon composites [J].
Donphai, Waleeporn ;
Witoon, Thongthai ;
Faungnawakij, Kajornsak ;
Chareonpanich, Metta .
JOURNAL OF CO2 UTILIZATION, 2016, 16 :245-256
[6]   Utilization of Greenhouse Gases through Dry Reforming: Screening of Nickel-Based Bimetallic Catalysts and Kinetic Studies [J].
Fan, Mun-Sing ;
Abdullah, Ahmad Zuhairi ;
Bhatia, Subhash .
CHEMSUSCHEM, 2011, 4 (11) :1643-1653
[7]   Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge [J].
Gallon, Helen J. ;
Tu, Xin ;
Whitehead, J. Christopher .
PLASMA PROCESSES AND POLYMERS, 2012, 9 (01) :90-97
[8]   Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels [J].
Guo, JJ ;
Lou, H ;
Zhao, H ;
Chai, DF ;
Zheng, XM .
APPLIED CATALYSIS A-GENERAL, 2004, 273 (1-2) :75-82
[9]   Highly Coke-Resistant Ni Nanoparticle Catalysts with Minimal Sintering in Dry Reforming of Methane [J].
Han, Joung Woo ;
Kim, Chanyeon ;
Park, Jun Seong ;
Lee, Hyunjoo .
CHEMSUSCHEM, 2014, 7 (02) :451-456
[10]   Generation, Capture, and Utilization of Industrial Carbon Dioxide [J].
Hunt, Andrew J. ;
Sin, Emily H. K. ;
Marriott, Ray ;
Clark, James H. .
CHEMSUSCHEM, 2010, 3 (03) :306-322