Local and global gradient estimates for Finsler p-harmonic functions

被引:0
作者
Xia, Q. I. A. O. L. I. N. G. [1 ]
机构
[1] HANGZHOU DIANZI Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
METRIC-MEASURE-SPACES; COMPLETE MANIFOLDS; UNIFORM CONVEXITY; 1ST EIGENVALUE; INEQUALITIES; SMOOTHNESS; CURVATURE; GEOMETRY; THEOREMS; FLOW;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give the local and global gradient estimates for positive Finsler p-eigenfunctions on a complete Finsler manifold M with the weighted Ricci curvature bounded from below by a negative constant. As applications, we obtain some Liouville and Harnack theorems, and the global gradient estimates for positive Finsler p-harmonic functions. As a by-product of the global estimate, we obtain an upper bound of the first p-eigenvalue lambda(1,p) for Finsler p-Laplacian delta(p). Further, we study the geometric structure at infinity of Finsler manifolds with lambda(1,p) achieving its maximum value.
引用
收藏
页码:451 / 500
页数:50
相关论文
共 35 条