Feature Extraction from Raw EEG Signals by Using Second Order Polynomial Fitting Algorithm

被引:0
作者
Aydemir, Oender [1 ]
Kayikcioglu, Temel [1 ]
机构
[1] Karadeniz Tech Univ, Elektr & Elekt Muhendisligi Bolumu, Trabzon, Turkey
来源
2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2 | 2009年
关键词
BRAIN-COMPUTER INTERFACE; BCI COMPETITION 2003; COMMUNICATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The classification of electroencephalogram (EEG) signals is a key issue in the brain computer interface (BCI) technology. Obtaining excellent classification result is directly based on an efficient feature extraction method In the paper, we propose a new method of feature extraction for classification of cursor movement imagery EEG. Second order polynomial fitting algorithm has been applied to imagined EEG signals to extract set of features. Then the extracted features are classified using support vector machine (SVM) and k-nearest neighbor (KNN) algorithms. We obtained significant improvement on classification accuracy for data set 1a, which is a typical representative of one kind of BCI data, as compared to the reported best accuracy in BCI competition 2003.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2004, PROC EUR S ARTIF NEU
[2]   The BCI competition 2003:: Progress and perspectives in detection and discrimination of EEG single trials [J].
Blankertz, B ;
Müller, KR ;
Curio, G ;
Vaughan, TM ;
Schalk, G ;
Wolpaw, JR ;
Schlögl, A ;
Neuper, C ;
Pfurtscheller, G ;
Hinterberger, T ;
Schröder, M ;
Birbaumer, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1044-1051
[3]  
Duda R.O., 2001, Pattern Classification, Vsecond
[4]   BIOFEEDBACK OF SLOW CORTICAL POTENTIALS .1. [J].
ELBERT, T ;
ROCKSTROH, B ;
LUTZENBERGER, W ;
BIRBAUMER, N .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1980, 48 (03) :293-301
[5]   Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) [J].
Guger, C ;
Ramoser, H ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (04) :447-456
[6]   A review of classification algorithms for EEG-based brain-computer interfaces [J].
Lotte, F. ;
Congedo, M. ;
Lecuyer, A. ;
Lamarche, F. ;
Arnaldi, B. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :R1-R13
[7]  
MENSH B, BCI COMPETITION 2003
[8]   BCI competition 2003 - Data set Ia: Combining gamma-band power with slow cortical potentials to improve single-trrial classification of electroencephalographic signals [J].
Mensh, BD ;
Werfel, J ;
Seung, HS .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1052-1056
[9]   Asynchronous BCI and local neural classifiers:: An overview of the adaptive brain interface project [J].
Millán, JD ;
Mouriño, J .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) :159-161
[10]   EEG-Based communication: A pattern recognition approach [J].
Penny, WD ;
Roberts, SJ ;
Curran, EA ;
Stokes, MJ .
IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8 (02) :214-215