Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete

被引:67
|
作者
Zhang, Peng [2 ]
Wang, Jia [2 ]
Li, Qingfu [1 ]
Wan, Jinyi [3 ]
Ling, Yifeng [4 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy Engn, 100 Sci Ave, Zhengzhou 100, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Water Conservancy Engn, 100 Sci Ave, Zhengzhou 450001, Henan, Peoples R China
[3] Yellow River Engn Consulting Co Ltd, Zhengzhou 450003, Peoples R China
[4] Iowa State Univ, Dept Civil Construct & Environm Engn, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
geopolymer concrete; fly ash; metakaolin; steel fiber; mechanical properties; fracture properties; FLY-ASH; NANO-SILICA; COMPRESSIVE BEHAVIOR; IMPACT RESISTANCE; PERFORMANCE; AGGREGATE; STRENGTH; SLAG; MICROSTRUCTURE; PREDICTION;
D O I
10.1515/secm-2021-0030
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this study, the effects of steel fibers on the mechanical properties of the geopolymer concrete - compressive, splitting tensile, and flexural strength; compressive elastic modulus; and fracture properties - were evaluated. Milling steel fibers were incorporated into the geopolymer concrete, and the volume fraction of the steel fibers was varied from 0 to 2.5%. Fly ash and metakaolin were chosen as the geopolymer precursors. Fracture parameters - critical effective crack length, initial fracture toughness, and unstable fracture toughness - were measured by a three-point bending test. The results indicated that all the mechanical properties of the geopolymer concrete are remarkably improved by the steel fibers with the optimum dosage. When the steel fiber content was under 2%, the cubic and axial compressive strength and the compressive elastic modulus increased. The inclusion of 2% steel fibers enhanced the cubic and axial compressive strength and the compressive elastic modulus by 27.6, 23.7, and 47.7%, respectively. When the steel fiber content exceeded 2%, the cubic and axial compressive strength and the compressive elastic modulus decreased, having values still higher than those of the geopolymer concrete without steel fibers. The splitting tensile strength and flexural strength of the concrete were enhanced with increasing steel fiber content. When the steel fiber content was 2.5%, the increment of the splitting tensile strength was 39.8%, whereas that of the flexural strength was 134.6%. The addition of steel fibers effectively improved the fracture toughness of the geopolymer concrete. With 2.5% steel fibers, the initial fracture toughness had an increase of 27.8%, and the unstable fracture toughness increased by 12.74 times compared to that of the geopolymer concrete without the steel fibers.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条
  • [1] Durability and microstructure of fiber-reinforced geopolymer concrete with FA and GGBS
    Kumar, H. M. Anil
    Shoba, M. S.
    STRUCTURES, 2025, 71
  • [2] Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete
    Gomes, Raphaela Fernandes
    Dias, Dylmar Penteado
    Silva, Flavio de Andrade
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 107
  • [3] Carbonation performances of steel fiber reinforced geopolymer concrete
    Luan, Chenchen
    Shi, Xiaoshuang
    Wang, Qingyuan
    Utashev, Nodir
    Tufail, Rana Faisal
    Maqsoom, Ahsen
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2023, 50 (04) : 294 - 305
  • [4] Study on the flexural properties and fiber-selection method of fiber-reinforced geopolymer concrete
    Zhao, Chenggong
    Wang, Zhiyuan
    Wu, Xinrui
    Zeng, Xianshuai
    Zhu, Zhenyu
    Guo, Qiuyu
    Zhao, Renda
    STRUCTURAL CONCRETE, 2023, 24 (01) : 1364 - 1385
  • [5] Mechanical and fracture properties of glass fiber reinforced geopolymer concrete
    Midhun, M. S.
    Rao, T. D. Gunneswara
    Srikrishna, T. Chaitanya
    ADVANCES IN CONCRETE CONSTRUCTION, 2018, 6 (01) : 29 - 45
  • [6] Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete
    Ding, Yao
    Bai, Yu-Lei
    MATERIALS, 2018, 11 (08)
  • [7] Enhancing Mechanical Properties of Fiber-Reinforced Self-Compacting Geopolymer Concrete Using Lightweight Aggregate
    Najim, Adam Saab
    Beddu, Salmia
    Itam, Zarina
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2024, 48 (05): : 699 - 707
  • [8] Mechanical and microscopic properties of fiber-reinforced coal gangue-based geopolymer concrete
    Xu, Zhong
    Wu, Jianing
    Zhao, Min
    Bai, Zhijie
    Wang, Kunyun
    Miao, Jiewei
    Tan, Zhuoyue
    NANOTECHNOLOGY REVIEWS, 2022, 11 (01) : 526 - 543
  • [9] Mechanical Properties of Fiber-Reinforced Permeable Geopolymer Concrete
    Xu, Lina
    Liu, Qilong
    Ding, Xu
    Sun, Shuang
    Huang, Zhanfang
    MATERIALS, 2023, 16 (17)
  • [10] Investigation of Mechanical and Microstructural Properties of Fiber-Reinforced Geopolymer Concrete with GGBFS and Metakaolin: Novel Raw Material for Geopolymerisation
    Chandrasekhar Reddy, K.
    SILICON, 2021, 13 (12) : 4565 - 4573