Opposition-based learning grey wolf optimizer for global optimization

被引:133
作者
Yu, Xiaobing [1 ,2 ,3 ]
Xu, WangYing [2 ,3 ]
Li, ChenLiang [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster KLME, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
关键词
Heuristic algorithm; Grey wolf optimizer; Opposition-based learning; Optimization; ALGORITHM;
D O I
10.1016/j.knosys.2021.107139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grey wolf optimizer is a novel swarm intelligent algorithm. It has received lots of interest from the heuristic algorithm community for its superior optimization capacity and few parameters. However, it is also easy to trap into the local optimum when solving complex and multimodal functions. In order to boost the performance of GWO, an opposition-based learning grey wolf optimizer (OGWO) is proposed. The opposition-based learning approach is incorporated into GWO with a jumping rate, which can help the algorithm jump out of the local optimum and not increase the computational complexity. What is more, the coefficient.a is dynamically adjusted by the nonlinear function to balance exploration and exploitation. The serial experiments have revealed that the proposed algorithm is superior to the conventional heuristic algorithms, it is also better than GWO and its variants. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 46 条
[31]   Opposition-based differential evolution [J].
Rahnamayan, Shahryar ;
Tizhoosh, Hamid R. ;
Salama, Magdy M. A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) :64-79
[32]   A comprehensive survey on gravitational search algorithm [J].
Rashedi, Esmat ;
Rashedi, Elaheh ;
Nezamabadi-pour, Hossein .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 41 :141-158
[33]   GSA: A Gravitational Search Algorithm [J].
Rashedi, Esmat ;
Nezamabadi-Pour, Hossein ;
Saryazdi, Saeid .
INFORMATION SCIENCES, 2009, 179 (13) :2232-2248
[34]   Group-based synchronous-asynchronous Grey Wolf Optimizer [J].
Rodriguez, Alma ;
Camarena, Octavio ;
Cuevas, Erik ;
Aranguren, Itzel ;
Valdivia-G, Arturo ;
Morales-Castaneda, Bernardo ;
Zaldivar, Daniel ;
Perez-Cisneros, Marco .
APPLIED MATHEMATICAL MODELLING, 2021, 93 :226-243
[35]   A fuzzy hierarchical operator in the grey wolf optimizer algorithm [J].
Rodriguez, Luis ;
Castillo, Oscar ;
Soria, Jose ;
Melin, Patricia ;
Valdez, Fevrier ;
Gonzalez, Claudia I. ;
Martinez, Gabriela E. ;
Soto, Jesus .
APPLIED SOFT COMPUTING, 2017, 57 :315-328
[36]   Biogeography-Based Optimization [J].
Simon, Dan .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (06) :702-713
[37]   Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm [J].
Song, Dongran ;
Liu, Junbo ;
Yang, Yinggang ;
Yang, Jian ;
Su, Mei ;
Wang, Yun ;
Gui, Ning ;
Yang, Xuebing ;
Huang, Lingxiang ;
Joo, Young Hoon .
ENERGY, 2021, 221
[38]   Grey Wolf production scheduling for the capital goods industry [J].
Sooncharoen, Saisumpan ;
Pongcharoen, Pupong ;
Hicks, Christian .
APPLIED SOFT COMPUTING, 2020, 94
[39]   A hybrid Grey Wolf Optimization and Particle Swarm Optimization with C4.5 approach for prediction of Rheumatoid Arthritis [J].
Sundaramurthy, Shanmugam ;
Jayavel, Preethi .
APPLIED SOFT COMPUTING, 2020, 94
[40]   A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems [J].
Tawhid, Mohamed A. ;
Ibrahim, Abdelmonem M. .
EVOLVING SYSTEMS, 2020, 11 (01) :65-87