Opposition-based learning grey wolf optimizer for global optimization

被引:133
作者
Yu, Xiaobing [1 ,2 ,3 ]
Xu, WangYing [2 ,3 ]
Li, ChenLiang [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster KLME, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
关键词
Heuristic algorithm; Grey wolf optimizer; Opposition-based learning; Optimization; ALGORITHM;
D O I
10.1016/j.knosys.2021.107139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grey wolf optimizer is a novel swarm intelligent algorithm. It has received lots of interest from the heuristic algorithm community for its superior optimization capacity and few parameters. However, it is also easy to trap into the local optimum when solving complex and multimodal functions. In order to boost the performance of GWO, an opposition-based learning grey wolf optimizer (OGWO) is proposed. The opposition-based learning approach is incorporated into GWO with a jumping rate, which can help the algorithm jump out of the local optimum and not increase the computational complexity. What is more, the coefficient.a is dynamically adjusted by the nonlinear function to balance exploration and exploitation. The serial experiments have revealed that the proposed algorithm is superior to the conventional heuristic algorithms, it is also better than GWO and its variants. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 46 条
[11]   Central force optimization: A new metaheuristic with applications in applied electromagnetics [J].
Formato, R. A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2007, 77 :425-491
[12]   An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing [J].
Gai, Jingbo ;
Shen, Junxian ;
Hu, Yifan ;
Wang, He .
MEASUREMENT, 2020, 162 (162)
[13]   A memory-based Grey Wolf Optimizer for global optimization tasks [J].
Gupta, Shubham ;
Deep, Kusum .
APPLIED SOFT COMPUTING, 2020, 93
[14]   An opposition-based chaotic Grey Wolf Optimizer for global optimisation tasks [J].
Gupta, Shubham ;
Deep, Kusum .
JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2019, 31 (05) :751-779
[15]   A novel Random Walk Grey Wolf Optimizer [J].
Gupta, Shubham ;
Deep, Kusum .
SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 :101-112
[16]   An efficient modified grey wolf optimizer with Levy flight for optimization tasks [J].
Heidari, Ali Asghar ;
Pahlavani, Parham .
APPLIED SOFT COMPUTING, 2017, 60 :115-134
[17]   Improved Binary Grey Wolf Optimizer and Its application for feature selection [J].
Hu, Pei ;
Pan, Jeng-Shyang ;
Chu, Shu-Chuan .
KNOWLEDGE-BASED SYSTEMS, 2020, 195
[18]   Economic dispatch using hybrid grey wolf optimizer [J].
Jayabarathi, T. ;
Raghunathan, T. ;
Adarsh, B. R. ;
Suganthan, Ponnuthurai Nagaratnam .
ENERGY, 2016, 111 :630-641
[19]   A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J].
Karaboga, Dervis ;
Basturk, Bahriye .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) :459-471
[20]  
Kennedy J., 1944, P ICNN 95 INT C NEUR, VVolume 1944, P1942