Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis

被引:759
|
作者
Fritsch, Melanie [1 ]
Gunther, Saskia D. [1 ]
Schwarzer, Robin [2 ]
Albert, Marie-Christine [1 ]
Schorn, Fabian [1 ]
Werthenbach, J. Paul [1 ]
Schiffmann, Lars M. [1 ,3 ]
Stair, Neil [1 ,2 ]
Stocks, Hannah [1 ]
Seeger, Jens M. [1 ]
Lamkanfi, Mohamed [4 ,5 ]
Kroenke, Martin [1 ]
Pasparakis, Manolis [2 ,6 ]
Kashkar, Hamid [1 ,6 ]
机构
[1] Univ Cologne, Inst Med Microbiol Immunol & Hyg IMMIH, CECAD Res Ctr, Cologne, Germany
[2] Univ Cologne, Inst Genet, CECAD Res Ctr, Cologne, Germany
[3] Univ Cologne, Dept Gen Visceral & Canc Surg, Cologne, Germany
[4] Univ Ghent, Dept Internal Med & Paediat, Ghent, Belgium
[5] VIB, Ctr Inflammat Res, Ghent, Belgium
[6] Univ Cologne, Ctr Mol Med Cologne CMMC, Cologne, Germany
基金
欧洲研究理事会;
关键词
INFLAMMASOME; REQUIREMENT; ACTIVATION; EXPRESSION; PROMOTES; PROTEASE; MOUSE; FADD;
D O I
10.1038/s41586-019-1770-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Caspase-8 is the initiator caspase of extrinsic apoptosis(1,2) and inhibits necroptosis mediated by RIPK3 and MLKL. Accordingly, caspase-8 deficiency in mice causes embryonic lethality(3), which can be rescued by deletion of either Ripk3 or Mlkl(4-6). Here we show that the expression of enzymatically inactive CASP8(C362S) causes embryonic lethality in mice by inducing necroptosis and pyroptosis. Similar to Casp8(-/-) mice(3,7), Casp8(C362S/C362S) mouse embryos died after endothelial cell necroptosis leading to cardiovascular defects. MLKL deficiency rescued the cardiovascular phenotype but unexpectedly caused perinatal lethality in Casp8(C362S/C362S) mice, indicating that CASP8(C362S) causes necroptosis-independent death at later stages of embryonic development. Specific loss of the catalytic activity of caspase-8 in intestinal epithelial cells induced intestinal inflammation similar to intestinal epithelial cell-specific Casp8 knockout mice(8). Inhibition of necroptosis by additional deletion of Mlkl severely aggravated intestinal inflammation and caused premature lethality in Mlkl knockout mice with specific loss of caspase-8 catalytic activity in intestinal epithelial cells. Expression of CASP8(C362S) triggered the formation of ASC specks, activation of caspase-1 and secretion of IL-1 beta. Both embryonic lethality and premature death were completely rescued in Casp8(C362S/C362S)Mlkl(-/-)Asc(-/-) or Casp8(C362S/C362S)Mlkl(-/-)Casp1(-/-) mice, indicating that the activation of the inflammasome promotes CASP8(C362S)-mediated tissue pathology when necroptosis is blocked. Therefore, caspase-8 represents the molecular switch that controls apoptosis, necroptosis and pyroptosis, and prevents tissue damage during embryonic development and adulthood.
引用
收藏
页码:683 / +
页数:17
相关论文
共 50 条
  • [21] Jolkinolide B Inhibits Gastric Cancer Growth by Targeting the PANoptosis Molecular Switch Caspase-8
    Ma, Chenhui
    Gao, Lei
    Song, Kewei
    Gu, Baohong
    Wang, Bofang
    Pu, Weigao
    Chen, Hao
    JOURNAL OF CANCER, 2024, 15 (18): : 6038 - 6051
  • [22] Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis
    Rodriguez, Diego A.
    Quarato, Giovanni
    Liedmann, Swantje
    Tummers, Bart
    Zhang, Ting
    Guy, Cliff
    Crawford, Jeremy Chase
    Palacios, Gustavo
    Pelletier, Stephane
    Kalkavan, Halime
    Shaw, Jeremy J. P.
    Fitzgerald, Patrick
    Chen, Mark J.
    Balachandran, Siddharth
    Green, Douglas R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (41)
  • [23] Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis
    Guenther, Claudia
    Martini, Eva
    Wittkopf, Nadine
    Amann, Kerstin
    Weigmann, Benno
    Neumann, Helmut
    Waldner, Maximilian J.
    Hedrick, Stephen M.
    Tenzer, Stefan
    Neurath, Markus F.
    Becker, Christoph
    NATURE, 2011, 477 (7364) : 335 - U108
  • [24] Oxidation of caspase-8 by hypothiocyanous acid enables TNF-mediated necroptosis
    Bozonet S.M.
    Magon N.J.
    Schwartfeger A.J.
    Konigstorfer A.
    Heath S.G.
    Vissers M.C.M.
    Morris V.K.
    Göbl C.
    Murphy J.M.
    Salvesen G.S.
    Hampton M.B.
    Journal of Biological Chemistry, 2023, 299 (06)
  • [25] Co-activation of Caspase-1 and Caspase-8 in CMV-induced SGN death by inflammasome-associated pyroptosis and apoptosis
    Li, Menghua
    Wu, Liyuan
    Chen, Mengbing
    Dong, Yanfen
    Zheng, Liting
    Chen, Daishi
    Qiao, Yuehua
    Ke, Zhaoyang
    Shi, Xi
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 113
  • [26] Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins
    Stupack, DG
    Puente, XS
    Boutsaboualoy, S
    Storgard, CM
    Cheresh, DA
    JOURNAL OF CELL BIOLOGY, 2001, 155 (03): : 459 - 470
  • [27] Optogenetic activators of apoptosis, necroptosis, and pyroptosis
    Shkarina, Kateryna
    de Carvalho, Eva Hasel
    Santos, Jose Carlos
    Ramos, Saray
    Leptin, Maria
    Broz, Petr
    JOURNAL OF CELL BIOLOGY, 2022, 221 (06):
  • [28] Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)
    Christgen, Shelbi
    Zheng, Min
    Kesavardhana, Sannula
    Karki, Rajendra
    Malireddi, R. K. Subbarao
    Banoth, Balaji
    Place, David E.
    Briard, Benoit
    Sharma, Bhesh Raj
    Tuladhar, Shraddha
    Samir, Parimal
    Burton, Amanda
    Kanneganti, Thirumala-Devi
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
  • [29] Compressive force induces osteoblast apoptosis via caspase-8
    Goga, Y
    Chiba, M
    Shimizu, Y
    Mitani, H
    JOURNAL OF DENTAL RESEARCH, 2006, 85 (03) : 240 - 244
  • [30] The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model
    Kominami, Katsuya
    Nakabayashi, Jun
    Nagai, Takeharu
    Tsujimura, Yuki
    Chiba, Kumiko
    Kimura, Haruna
    Miyawaki, Atsushi
    Sawasaki, Tatsuya
    Yokota, Hideo
    Manabe, Noboru
    Sakamaki, Kazuhiro
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2012, 1823 (10): : 1825 - 1840