BLAC: A Named Entity Recognition Model Incorporating Part-of-Speech Attention in Irregular Short Text

被引:0
|
作者
Zhu, Ming [1 ]
Li, Huakang [1 ,2 ,3 ]
Sun, Xiaoyu [1 ]
Yang, Zhuo [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[2] Lab Urban Land Resources Monitoring & Simulat She, Shenzhen 518034, Peoples R China
[3] Suzhou Privacy Informat Technol Co, Suzhou 215011, Peoples R China
[4] Guangdong Univ Technol, Sch Sch Comp, Guangzhou, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE-RCAR 2020) | 2020年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
POS attention model; Named entity recognition; Irregular short text; BI-LSTM-CRF; BLAC;
D O I
10.1109/rcar49640.2020.9303256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Irregular text refers to text with incomplete sequence information of the sentence or text that does not meet normal grammatical specifications, such as Weibo text. Existing named entity recognition algorithms recognize such text, the effect is poor due to the lack of context information. Because the attention mechanism has advantages in obtaining contextual information, we merge part-of-speech attention with the BI-LSTM-CRF model and propose a BLAC model. We tested on several public datasets and compared the results with the basic model BI-LSTM-CRF. The results show that the method we proposed has a certain improvement in the entity recognition of irregular short text.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 38 条
  • [31] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Luqi Li
    Jie Zhao
    Li Hou
    Yunkai Zhai
    Jinming Shi
    Fangfang Cui
    BMC Medical Informatics and Decision Making, 19
  • [32] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Cui, Shengmin
    Joe, Inwhee
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2561 - 2574
  • [33] A multi-head adjacent attention-based pyramid layered model for nested named entity recognition
    Shengmin Cui
    Inwhee Joe
    Neural Computing and Applications, 2023, 35 : 2561 - 2574
  • [34] Extending a CRF-based named entity recognition model for Turkish well formed text and user generated content
    Seker, Gokhan Akin
    Eryigit, Gulsen
    SEMANTIC WEB, 2017, 8 (05) : 625 - 642
  • [35] An Attention-Based ID-CNNs-CRF Model for Named Entity Recognition on Clinical Electronic Medical Records
    Gao, Ming
    Xiao, Qifeng
    Wu, Shaochun
    Deng, Kun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 231 - 242
  • [36] An attention-based multi-task model for named entity recognition and intent analysis of Chinese online medical questions
    Wu, Chaochen
    Luo, Guan
    Guo, Chao
    Ren, Yin
    Zheng, Anni
    Yang, Cheng
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 108 (108)
  • [37] Semi-Supervised Bidirectional Long Short-Term Memory and Conditional Random Fields Model for Named-Entity Recognition Using Embeddings from Language Models Representations
    Zhang, Min
    Geng, Guohua
    Chen, Jing
    ENTROPY, 2020, 22 (02)
  • [38] Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model
    Wu, Hong
    Ji, Jiatong
    Tian, Haimei
    Chen, Yao
    Ge, Weihong
    Zhang, Haixia
    Yu, Feng
    Zou, Jianjun
    Nakamura, Mitsuhiro
    Liao, Jun
    JMIR MEDICAL INFORMATICS, 2021, 9 (12)