Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation

被引:27
|
作者
Tan, Shoubiao [1 ,2 ]
Sun, Xi [3 ]
Chan, Wentao [1 ,2 ]
Qu, Lei [1 ,2 ]
Shao, Ling [4 ]
机构
[1] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Sch Elect & Informat Engn, Hefei 230601, Anhui, Peoples R China
[3] Anhui Post & Telecommun Coll, Dept Comp Sci, Hefei 230031, Anhui, Peoples R China
[4] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Face recognition; sparse representation; locality-sensitive; kernel methods; group sparsity; REGRESSION;
D O I
10.1109/TIP.2017.2716180
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel joint sparse representation method is proposed for robust face recognition. We embed both group sparsity and kernelized locality-sensitive constraints into the framework of sparse representation. The group sparsity constraint is designed to utilize the grouped structure information in the training data. The local similarity between test and training data is measured in the kernel space instead of the Euclidian space. As a result, the embedded nonlinear information can be effectively captured, leading to a more discriminative representation. We show that, by integrating the kernelized local-sensitivity constraint and the group sparsity constraint, the embedded structure information can be better explored, and significant performance improvement can be achieved. On the one hand, experiments on the ORL, AR, extended Yale B, and LFW data sets verify the superiority of our method. On the other hand, experiments on two unconstrained data sets, the LFW and the IJB-A, show that the utilization of sparsity can improve recognition performance, especially on the data sets with large pose variation.
引用
收藏
页码:4661 / 4668
页数:8
相关论文
共 50 条
  • [41] Robust Coarse-to-Fine Sparse Representation for Face Recognition
    Sun, Yunlian
    Tistarelli, Massimo
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 171 - 180
  • [42] Modular Fisher Discriminant Sparse Representation for robust face recognition
    Zhao, Shuhuan
    Hu, Zhengping
    OPTIK, 2014, 125 (21): : 6505 - 6508
  • [43] Multiplication fusion of sparse and collaborative representation for robust face recognition
    Shaoning Zeng
    Xiong Yang
    Jianping Gou
    Multimedia Tools and Applications, 2017, 76 : 20889 - 20907
  • [44] Improving representation-based classification for robust face recognition
    Zhang, Hongzhi
    Zhang, Zheng
    Li, Zhengming
    Chen, Yan
    Shi, Jian
    JOURNAL OF MODERN OPTICS, 2014, 61 (11) : 961 - 968
  • [45] Robust supervised sparse representation for face recognition
    Mi, Jian-Xun
    Sun, Yueru
    Lu, Jia
    Kong, Heng
    COGNITIVE SYSTEMS RESEARCH, 2020, 62 : 10 - 22
  • [46] Robust kernel collaborative representation for face recognition
    Huang, Wei
    Wang, Xiaohui
    Ma, Yanbo
    Jiang, Yuzheng
    Zhu, Yinghui
    Jin, Zhong
    OPTICAL ENGINEERING, 2015, 54 (05)
  • [47] Multiplication fusion of sparse and collaborative representation for robust face recognition
    Zeng, Shaoning
    Yang, Xiong
    Gou, Jianping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (20) : 20889 - 20907
  • [48] Robust Face Recognition via Multimodal Deep Face Representation
    Ding, Changxing
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 2049 - 2058
  • [49] Noise Robust Face Hallucination via Locality-Constrained Representation
    Jiang, Junjun
    Hu, Ruimin
    Wang, Zhongyuan
    Han, Zhen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (05) : 1268 - 1281
  • [50] A video semantic detection method based. on locality-sensitive discriminant sparse representation and weighted KNN
    Zhan, Yongzhao
    Liu, Junqi
    Gou, Jianping
    Wang, Minchao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 41 : 65 - 73