Comparison of mass lumping techniques for solving the 3D Maxwell's equations in the time domain

被引:1
|
作者
Benhassine, S
Carpes, WP
Pichon, L
机构
[1] Univ Paris 11, SUPELEC, CNRS, UMR 8507,Lab Genie Electr Paris, F-91192 Gif Sur Yvette, France
[2] Univ Paris 06, SUPELEC, CNRS, UMR 8507,Lab Genie Electr Paris, F-91192 Gif Sur Yvette, France
关键词
electromagnetic propagation; finite element methods; mass lumping; time domain analysis;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a comparison of mass lumping techniques for the time-domain solution of the,3D Maxwell's equations through edge elements. These techniques allow obtaining a fully explicit time integration procedure. We present two different techniques: the so-called classical method and the Lacoste method as well as a modified scheme to avoid numerical problems due to the shape of mesh elements, Numerical results are presented and compared with those obtained with a consistent method (without lumping).
引用
收藏
页码:1548 / 1552
页数:5
相关论文
共 23 条
  • [1] Gauss point mass lumping schemes for Maxwell's equations
    Cohen, G
    Monk, P
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1998, 14 (01) : 63 - 88
  • [2] A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations
    Fisher, A
    Rieben, RN
    Rodrigue, GH
    White, DA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (09) : 2900 - 2910
  • [3] A SECOND-ORDER FINITE ELEMENT METHOD WITH MASS LUMPING FOR MAXWELL'S EQUATIONS ON TETRAHEDRA
    Egger, Herbert
    Radu, Bogdan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 864 - 885
  • [4] Multisymplectic Preissman scheme for the time-domain Maxwell's equations
    Cai, Jiaxiang
    Wang, Yushun
    Qiao, Zhonghua
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
  • [5] An Efficient Three-Stage Split-Step Precise Integration Time-Domain Method for Solving Maxwell's Equations
    Chi, Mingjun
    Ma, Xikui
    Ma, Liang
    Xiang, Ru
    Zhu, Xiaojie
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (12): : 4668 - 4672
  • [6] A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations
    Zhang, Pan
    Hu, Yanyan
    Jin, Yuchen
    Deng, Shaogui
    Wu, Xuqing
    Chen, Jiefu
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2021, 6 : 35 - 40
  • [7] Solving the maxwell equations by the Chebyshev method: A one-step finite-difference time-domain algorithm
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (11) : 3155 - 3160
  • [8] The application of a finite difference finite volume algorithm to solve Maxwell's equations in the time domain
    White, MD
    Chattot, JJ
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1995, 5 (1-2) : 81 - 98
  • [9] The time domain green's function and propagator for Maxwell's equations (vol 56, pg no 4, 2008)
    Nevels, Robert
    Jeong, Jaehoon
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (04) : 1212 - 1213
  • [10] Superconvergence analysis for time-domain Maxwell's equations in a Havriliak-Negami dispersive medium
    Liu, Nuodi
    Chen, Yanping
    Zhou, Jianwei
    Huang, Yunqing
    APPLIED MATHEMATICS LETTERS, 2023, 145