A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

被引:17
|
作者
Lin, Lei [1 ,2 ]
Meng, Yu [1 ]
Yue, Anzhi [1 ]
Yuan, Yuan [1 ,2 ]
Liu, Xiaoyi [1 ,2 ]
Chen, Jingbo [1 ]
Zhang, Mengmeng [3 ]
Chen, Jiansheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
forest fire detection; spatio-temporal model (STM); thermal infrared; HJ-1B; DETECTION ALGORITHM; MODIS; VALIDATION; SENSORS; IMAGERY; SEVIRI; MSG;
D O I
10.3390/rs8050403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS) images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A satellite remote sensing based marine and atmospheric spatio-temporal data model
    Fang Chaoyang
    Hui, Lin
    Guilbert, Eric
    Ge, Chen
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION SCIENCE, 2006, 6420
  • [22] Real time Video Fire Detection using Spatio-Temporal Consistency Energy
    Barmpoutis, Panagiotis
    Dimitropoulos, Kosmas
    Grammalidis, Nikos
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 365 - 370
  • [23] Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data
    Ge, Xingtong
    Yang, Yi
    Peng, Ling
    Chen, Luanjie
    Li, Weichao
    Zhang, Wenyue
    Chen, Jiahui
    REMOTE SENSING, 2022, 14 (14)
  • [24] Spatio-temporal segmentation of mesoscale ocean surface dynamics using satellite data
    Tandeo, Pierre
    Fablet, Ronan
    Garello, Rene
    2013 MTS/IEEE OCEANS - BERGEN, 2013,
  • [25] Spatio-Temporal Data Fusion for Satellite Images Using Hopfield Neural Network
    Fung, Che Heng
    Wong, Man Sing
    Chan, P. W.
    REMOTE SENSING, 2019, 11 (18)
  • [26] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [27] Spatio-temporal Outlier Detection in Precipitation Data
    Wu, Elizabeth
    Liu, Wei
    Chawla, Sanjay
    KNOWLEDGE DISCOVERY FROM SENSOR DATA, 2010, 5840 : 115 - 133
  • [28] Spatio-temporal Anomaly Detection in Traffic Data
    Wang, Qing
    Lv, Weifeng
    Du, Bowen
    ISCSIC'18: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, 2018,
  • [29] Examining Spatio-Temporal Change Detection in the Indus River Delta with the Help of Satellite Data
    Mahar, Gohar A.
    Zaigham, Nayyer A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (07) : 1933 - 1946
  • [30] Quantifying Spatio-Temporal Errors in Forest Fire Spread Modelling Explicitly
    Cui, W.
    Perera, A. H.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2010, 16 (01) : 19 - 26