A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

被引:17
作者
Lin, Lei [1 ,2 ]
Meng, Yu [1 ]
Yue, Anzhi [1 ]
Yuan, Yuan [1 ,2 ]
Liu, Xiaoyi [1 ,2 ]
Chen, Jingbo [1 ]
Zhang, Mengmeng [3 ]
Chen, Jiansheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
forest fire detection; spatio-temporal model (STM); thermal infrared; HJ-1B; DETECTION ALGORITHM; MODIS; VALIDATION; SENSORS; IMAGERY; SEVIRI; MSG;
D O I
10.3390/rs8050403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS) images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.
引用
收藏
页数:18
相关论文
共 24 条
  • [1] Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery
    Amraoui, M.
    DaCamara, C. C.
    Pereira, J. M. C.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2010, 114 (05) : 1038 - 1052
  • [2] Global night-time fire season timing and fire count trends using the ATSR instrument series
    Arino, Olivier
    Casadio, Stefano
    Serpe, Danilo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 116 : 226 - 238
  • [3] Validation of active forest fires detected by MSG-SEVIRI by means of MODIS hot spots and AWiFS images
    Calle, A.
    Gonzalez-Alonso, F.
    de Miguel, S. Merino
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (12) : 3407 - 3415
  • [4] Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results
    Csiszar, Ivan
    Schroeder, Wilfrid
    Giglio, Louis
    Ellicott, Evan
    Vadrevu, Krishna P.
    Justice, Christopher O.
    Wind, Brad
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (02) : 803 - 816
  • [5] Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in northern Eurasia
    Csiszar, Ivan A.
    Morisette, Jeffrey T.
    Giglio, Louis
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (07): : 1757 - 1764
  • [6] An enhanced contextual fire detection algorithm for MODIS
    Giglio, L
    Descloitres, J
    Justice, CO
    Kaufman, YJ
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 87 (2-3) : 273 - 282
  • [7] The collection 6 MODIS active fire detection algorithm and fire products
    Giglio, Louis
    Schroeder, Wilfrid
    Justice, Christopher O.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 178 : 31 - 41
  • [8] Hassini Abdelatif, 2009, American Journal of Applied Sciences, V6, P157
  • [9] Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data
    He, Liming
    Li, Zhanqing
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (22) : 7047 - 7059
  • [10] Early fire detection using non-linear multitemporal prediction of thermal imagery
    Koltunov, A.
    Ustin, S. L.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 110 (01) : 18 - 28