Quantum Photonic Interface for Tin-Vacancy Centers in Diamond

被引:52
|
作者
Rugar, Alison E. [1 ]
Aghaeimeibodi, Shahriar [1 ]
Riedel, Daniel [1 ]
Dory, Constantin [1 ]
Lu, Haiyu [2 ,3 ,4 ]
McQuade, Patrick J. [4 ,5 ]
Shen, Zhi-Xun [2 ,3 ,4 ,6 ]
Melosh, Nicholas A. [4 ,5 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
IMPLANTATION; GENERATION; SPINS;
D O I
10.1103/PhysRevX.11.031021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The realization of quantum networks critically depends on establishing efficient, coherent light-matter interfaces. Optically active spins in diamond have emerged as promising quantum nodes based on their spin-selective optical transitions, long-lived spin ground states, and potential for integration with nanophotonics. Tin-vacancy (SnV-) centers in diamond are of particular interest because they exhibit narrow-linewidth emission in nanostructures and possess long spin coherence times at temperatures above 1 K. However, a nanophotonic interface for SnV- centers has not yet been realized. Here, we report cavity enhancement of the emission of SnV- centers in diamond. We integrate SnV- centers into one-dimensional photonic crystal resonators and observe a 40-fold increase in emission intensity. The Purcell factor of the coupled system is 25, resulting in a channeling of the majority of photons (90%) into the cavity mode. Our results pave the way for the creation of efficient, scalable spin-photon interfaces based on SnV- centers in diamond.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Spectral Emission Dependence of Tin-Vacancy Centers in Diamond from Thermal Processing and Chemical Functionalization
    Corte, Emilio
    Sachero, Selene
    Tchernij, Sviatoslav Ditalia
    Luhmann, Tobias
    Pezzagna, Sebastien
    Traina, Paolo
    Degiovanni, Ivo Pietro
    Moreva, Ekaterina
    Olivero, Paolo
    Meijer, Jan
    Genovese, Marco
    Forneris, Jacopo
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (01):
  • [22] Nonlinear Quantum Photonics with a Tin-Vacancy Center Coupled to a One-Dimensional Diamond Waveguide
    Pasini, Matteo
    Codreanu, Nina
    Turan, Tim
    Moral, Adria Riera
    Primavera, Christian F.
    De Santis, Lorenzo
    Beukers, Hans K. C.
    Brevoord, Julia M.
    Waas, Christopher
    Borregaard, Johannes
    Hanson, Ronald
    PHYSICAL REVIEW LETTERS, 2024, 133 (02)
  • [23] Spectroscopic investigations of negatively charged tin-vacancy centres in diamond
    Goerlitz, Johannes
    Herrmann, Dennis
    Thiering, Gergo
    Fuchs, Philipp
    Gandil, Morgane
    Iwasaki, Takayuki
    Taniguchi, Takashi
    Kieschnick, Michael
    Meijer, Jan
    Hatano, Mutsuko
    Gali, Adam
    Becher, Christoph
    NEW JOURNAL OF PHYSICS, 2020, 22 (01):
  • [24] Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide
    Karapatzakis, Ioannis
    Resch, Jeremias
    Schrodin, Marcel
    Fuchs, Philipp
    Kieschnick, Michael
    Heupel, Julia
    Kussi, Luis
    Suergers, Christoph
    Popov, Cyril
    Meijer, Jan
    Becher, Christoph
    Wernsdorfer, Wolfgang
    Hunger, David
    PHYSICAL REVIEW X, 2024, 14 (03):
  • [25] Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity
    Herrmann, Yanik
    Fischer, Julius
    Brevoord, Julia M.
    Sauerzapf, Colin
    Wienhoven, Leonardo G. C.
    Feije, Laurens J.
    Pasini, Matteo
    Eschen, Martin
    Ruf, Maximilian
    Weaver, Matthew J.
    Hanson, Ronald
    PHYSICAL REVIEW X, 2024, 14 (04):
  • [26] Tin-vacancy complex in germanium
    Markevich, V. P.
    Peaker, A. R.
    Hamilton, B.
    Litvinov, V. V.
    Pokotilo, Yu. M.
    Lastovskii, S. B.
    Coutinho, J.
    Carvalho, A.
    Rayson, M. J.
    Briddon, P. R.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [27] Structure of tin-vacancy defects in silicon
    Kaukonen, M
    Jones, R
    Öberg, S
    Briddon, PR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 186 : 24 - 29
  • [28] THE TIN-VACANCY PAIR DEFECT IN SILICON
    DAMGAARD, S
    PETERSEN, JW
    WEVER, G
    HYPERFINE INTERACTIONS, 1981, 10 (1-4): : 751 - 757
  • [29] Single-Shot Readout and Weak Measurement of a Tin-Vacancy Qubit in Diamond
    Rosenthal, Eric I.
    Biswas, Souvik
    Scuri, Giovanni
    Lee, Hope
    Stein, Abigail J.
    Kleidermacher, Hannah C.
    Grzesik, Jakob
    Rugar, Alison E.
    Aghaeimeibodi, Shahriar
    Riedel, Daniel
    Titze, Michael
    Bielejec, Edward S.
    Choi, Joonhee
    Anderson, Christopher P.
    Vu, Jelena
    PHYSICAL REVIEW X, 2024, 14 (04):
  • [30] Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond
    Trusheim, Matthew E.
    Pingault, Benjamin
    Wan, Noel H.
    Gundogan, Mustafa
    De Santis, Lorenzo
    Debroux, Romain
    Gangloff, Dorian
    Purser, Carola
    Chen, Kevin C.
    Walsh, Michael
    Rose, Joshua J.
    Becker, Jonas N.
    Lienhard, Benjamin
    Bersin, Eric
    Paradeisanos, Ioannis
    Wang, Gang
    Lyzwa, Dominika
    Montblanch, Alejandro R-P.
    Malladi, Girish
    Bakhru, Hassaram
    Ferrari, Andrea C.
    Walmsley, Ian A.
    Atature, Mete
    Englund, Dirk
    PHYSICAL REVIEW LETTERS, 2020, 124 (02)