Some restrictions on the maps in minimal resolutions

被引:25
作者
Koh, J [1 ]
Lee, K
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Sookmyung Womens Univ, Dept Math, Seoul, South Korea
关键词
D O I
10.1006/jabr.1997.7310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there are certain restrictions on the entries of the maps in the minimal free resolutions of finitely generated modules of infinite projective dimension over Noetherian local rings. These restrictions provide a way to slightly improve Herzog's characterization of modules of finite projective and injective dimensions in characteristic p > 0. We also discuss other homological situations related to these restrictions, including previously known results on the existence of free summands in syzygy modules. (C) 1998 Academic Press.
引用
收藏
页码:671 / 689
页数:19
相关论文
共 32 条
[11]   CATEGORY OF GRADED MODULES [J].
FOSSUM, R ;
FOXBY, HB .
MATHEMATICA SCANDINAVICA, 1974, 35 (02) :288-300
[12]  
FOSSUM R, 1975, PUBL MATH IHES, V0045, P00193
[13]   STRUCTURE OF INDECOMPOSABLE INJECTIVE MODULES [J].
FOSSUM, RM .
MATHEMATICA SCANDINAVICA, 1975, 36 (02) :291-312
[14]  
Goto S., 1978, J MATH SOC JAPAN, V30, P179, DOI [10.2969/jmsj/03020179, DOI 10.2969/JMSJ/03020179]
[15]   P CHARACTERISTIC RING AND FROBENIUS FUNCTORS [J].
HERZOG, J .
MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (01) :67-78
[16]   CANONICAL ELEMENTS IN LOCAL CO-HOMOLOGY MODULES AND THE DIRECT SUMMAND CONJECTURE [J].
HOCHSTER, M .
JOURNAL OF ALGEBRA, 1983, 84 (02) :503-553
[17]  
HOCHSTER M, 1977, T AM MATH SOC, V231, P464
[18]  
HUNEKE C, 1986, P AM MATH SOC, V98, P394
[19]   COFINITENESS AND VANISHING OF LOCAL COHOMOLOGY MODULES [J].
HUNEKE, C ;
KOH, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 :421-429
[20]  
Kaplansky I., 1970, COMMUTATIVE RINGS, px+180