Some restrictions on the maps in minimal resolutions

被引:25
作者
Koh, J [1 ]
Lee, K
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Sookmyung Womens Univ, Dept Math, Seoul, South Korea
关键词
D O I
10.1006/jabr.1997.7310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there are certain restrictions on the entries of the maps in the minimal free resolutions of finitely generated modules of infinite projective dimension over Noetherian local rings. These restrictions provide a way to slightly improve Herzog's characterization of modules of finite projective and injective dimensions in characteristic p > 0. We also discuss other homological situations related to these restrictions, including previously known results on the existence of free summands in syzygy modules. (C) 1998 Academic Press.
引用
收藏
页码:671 / 689
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1995, GRADUATE TEXTS MATH
[2]  
BUCHSBAUM DA, 1973, J ALGEBRA, V25, P259, DOI 10.1016/0021-8693(73)90044-6
[3]  
BURCH L, 1968, MATH P CAMBRIDGE PHI, V64, P941
[4]   RETRACTS OF POLYNOMIAL RINGS [J].
COSTA, DL .
JOURNAL OF ALGEBRA, 1977, 44 (02) :492-502
[5]  
DUTTA S, 1989, COMMUTATIVE ALGEBRA, V15, P139
[6]  
DUTTA S, NOTE MONOMIAL CONJEC
[7]   DUALIZING COMPLEX AND THE CANONICAL ELEMENT CONJECTURE [J].
DUTTA, SP .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :477-487
[8]   Dualizing complex and the canonical element conjecture .2. [J].
Dutta, SP .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 :49-63
[9]   IDEALS OF MINORS IN FREE RESOLUTIONS [J].
EISENBUD, D ;
GREEN, ML .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :339-352