General decay for a nonlinear beam equation with weak dissipation

被引:14
作者
Park, Jong Yeoul [1 ]
Park, Sun Hye [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
WELL-POSEDNESS; WAVE-EQUATIONS; UNIFORM DECAY; RATES; STABILITY; EXISTENCE;
D O I
10.1063/1.3460321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the influence of dissipation on decay properties of the solutions for a quasilinear beam equation with nonlinear weak dissipation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3460321]
引用
收藏
页数:8
相关论文
共 27 条
[11]   NONLINEAR VIBRATION OF BEAMS + RECTANGULAR PLATES [J].
EISLEY, JG .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1964, 15 (02) :167-&
[12]   General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping [J].
Guesmia, Aissa ;
Messaoudi, Salim A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (16) :2102-2122
[13]   DECAY-ESTIMATES FOR SOME SEMILINEAR DAMPED HYPERBOLIC PROBLEMS [J].
HARAUX, A ;
ZUAZUA, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :191-206
[14]   Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain [J].
Ikehata, Ryo ;
Inoue, Yu-ki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :154-169
[15]  
KOMONIK V, 1994, EXACT CONTROLLABILIT
[16]  
Lasiecka I., 1993, Differ. Integral Equ, V6, P507
[17]   Well-posedness and sharp uniform decay rates at the L2(Ω)-level of the Schrodinger equation with nonlinear boundary dissipation [J].
Lasiecka, Irena ;
Triggiani, Roberto .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (03) :485-537
[18]  
Lions JL., 1972, NONHOMOGENEOUS BOUND
[19]  
Martinez P., 1999, ESAIM: Control, Optim. Calculus Variations, V4, P419
[20]   NEW CLASS OF NON-LINEAR WAVE-EQUATIONS [J].
MEDEIROS, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 69 (01) :252-262