An overview on the use of additives and preparation procedure in phase change materials for thermal energy storage with a focus on long term applications

被引:46
|
作者
Ribezzo, Alessandro [1 ]
Falciani, Gabriele [1 ]
Bergamasco, Luca [1 ]
Fasano, Matteo [1 ]
Chiavazzo, Eliodoro [1 ]
机构
[1] Politecn Torino, Dept Energy, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Thermal energy storage; Phase change materials; Additives; Thermal conductivity; Long term heat storage; SODIUM-ACETATE TRIHYDRATE; HEAT-STORAGE; SUGAR ALCOHOLS; CONDUCTIVITY ENHANCEMENT; SOLIDIFICATION BEHAVIOR; CARBON NANOTUBES; D-MANNITOL; THERMOPHYSICAL PROPERTIES; PHYSICAL-PROPERTIES; EUTECTIC MIXTURES;
D O I
10.1016/j.est.2022.105140
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this review we aim at providing an up-to-date and comprehensive overview on the use of additives within selected Phase Change Materials (PCMs) from both an experimental and more theoretical perspective. Traditionally, mostly focusing on short-term thermal energy storage applications, the addition of (nano)fillers has been extensively studied to enhance unsatisfactory thermo-physical properties in PCMs, in order to overcome limiting aspects such as low thermal conductivity possibly leading to unacceptable long charging and/or discharging periods and inefficient heat-storage systems. On the other hand, here we focus on the most important PCMs for long-term thermal energy storage (i.e. spanning from classical solid-to-liquid to more recent solid-to-solid PCMs) and make an effort in shedding light on the role played not only by additives but also (and importantly) by additivation protocols on the resulting thermo-physical and stability properties. While introducing and connecting to general advantages related to additivation in classical PCMs for thermal energy storage, we discuss specifically the use of additives in sugar alcohols and sodium acetate trihydrate, as well as in novel emerging classes of PCMs capable of undergoing solid-to-solid transitions and showing promising features for long-term heat storage materials. We highlight outstanding issues in the use of additives for property enhancement in PCMs and expect that the present work can contribute to expand the current understanding and field of application of the less mature PCMs for thermal energy storage, especially as far as long term applications are concerned.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Use of phase change materials for thermal energy storage in concrete: An overview
    Ling, Tung-Chai
    Poon, Chi-Sun
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 46 : 55 - 62
  • [2] Preparation, Characterization and Thermal Cycling Analyses of Nanocomposite Phase Change Materials for Thermal Energy Storage Applications
    Muzhanje, Allan T.
    Hassan, Hamdy
    NANO, 2024,
  • [3] Thermal endurance of xylitol as a phase change material for thermal energy storage applications
    Diarce, Gonzalo
    Rojo, Ander
    Quant, Laura
    Bouzas, Lourdes
    Garcia-Romero, Ana
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [4] Thermal energy storage and phase change materials: An overview
    Demirbas, M. Fatih
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2006, 1 (01) : 85 - 95
  • [5] Review on phase change materials for cold thermal energy storage applications
    Nie, Binjian
    Palacios, Anabel
    Zou, Boyang
    Liu, Jiaxu
    Zhang, Tongtong
    Li, Yunren
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 134
  • [6] Experimental study of screening polyols and their binary eutectic phase change materials for long-term thermal energy storage
    Lv, Laiquan
    Huang, Shengyao
    Cen, Kefa
    Zhou, Hao
    JOURNAL OF CLEANER PRODUCTION, 2023, 399
  • [7] Advancement in phase change materials for thermal energy storage applications
    Kant, Karunesh
    Shukla, A.
    Sharma, Atul
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 82 - 92
  • [8] A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications
    Sun, Mingyang
    Liu, Tong
    Sha, Haonan
    Li, Mulin
    Liu, Tianze
    Wang, Xinlei
    Chen, Guijun
    Wang, Jiadian
    Jiang, Dongyue
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [9] Heat capacities of some sugar alcohols as phase change materials for thermal energy storage applications
    Jia, Rui
    Sun, Keyan
    Li, Rongchun
    Zhang, Youyou
    Wang, Wenxia
    Yin, Heng
    Fang, Dawei
    Shi, Quan
    Tan, Zhicheng
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2017, 115 : 233 - 248
  • [10] Morphological characterization and applications of phase change materials in thermal energy storage: A review
    Huang, Xiang
    Alva, Guruprasad
    Jia, Yuting
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 : 128 - 145