A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION

被引:1
作者
Fu, Peng [1 ]
Sun, Quansen [1 ]
Ji, Zexuan [1 ]
Geng, Leilei [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Shandong Univ Finance & Econ, Inst Comp Sci & Technol, Jinan 250014, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; random noise; superpixel; wavelet transform; fusion strategy;
D O I
10.1109/IGARSS39084.2020.9323627
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Random noise in hyperspectral images (HSIs) may significantly degrade the image quality and further affect the subsequent image applications, such as land cover classification. To improve the performance of the existing classification methods on noisy HSIs, we propose a framework to take full advantages of the superpixel segmentation and the traditional pixel-wise classification methods. First, a novel superpixel model is proposed for HSI segmentation, where a new spectral similarity is defined in wavelet domain to make the superpixel model more robust to random noise; then, a simple but effective fusion strategy is designed to combine the superpixels with the pixel-wise classification results. Experimental results demonstrate the effectiveness of the proposed superpixel model and fusion strategy on noisy HSIs.
引用
收藏
页码:834 / 837
页数:4
相关论文
共 9 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Hyperspectral Image Segmentation via Frequency-Based Similarity for Mixed Noise Estimation [J].
Fu, Peng ;
Sun, Xin ;
Sun, Quansen .
REMOTE SENSING, 2017, 9 (12)
[3]   Advanced Spectral Classifiers for Hyperspectral Images A review [J].
Ghamisi, Pedram ;
Plaza, Javier ;
Chen, Yushi ;
Li, Jun ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (01) :8-32
[4]   Daubechies wavelet coefficients: a tool to study interplanetary magnetic field fluctuations [J].
Gonzalez, Arian Ojeda ;
Mendes Junior, Odim ;
Domingues, Margarete Oliveira ;
Menconi, Varlei Everton .
GEOFISICA INTERNACIONAL, 2014, 53 (02) :101-115
[5]  
Han BN, 2017, INT GEOSCI REMOTE SE, P3767, DOI 10.1109/IGARSS.2017.8127819
[6]   SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery [J].
Jiang, Junjun ;
Ma, Jiayi ;
Chen, Chen ;
Wang, Zhongyuan ;
Cai, Zhihua ;
Wang, Lizhe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4581-4593
[7]   Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery [J].
Phan Thanh Noi ;
Kappas, Martin .
SENSORS, 2018, 18 (01)
[8]   Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images [J].
Sun, He ;
Ren, Jinchang ;
Zhao, Huimin ;
Yan, Yijun ;
Zabalza, Jaime ;
Marshall, Stephen .
REMOTE SENSING, 2019, 11 (05)
[9]  
Yadav J., 2013, International Journal of Engineering Trends and Technology, V4, P2972, DOI DOI 10.5120/1326-1808