Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems

被引:1
|
作者
Xing Lifen [1 ]
Shang Gang [1 ]
Liu Jie [1 ]
Li Xinjie [1 ]
Dong Pengzhen [1 ]
机构
[1] Wuhan Univ Sci & Engn, Res Ctr Nonlinear Sci, Wuhan 430073, Peoples R China
来源
PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II | 2009年
关键词
fractional hyper-chaotic Lorenz system; projective synchronization; scaling factor; GENERALIZED SYNCHRONIZATION; ATTRACTOR; DESIGN;
D O I
10.1109/CINC.2009.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Projective synchronization in coupled hyper-chaotic Lorenz systems of integral order and its fractional order commensurate cases are both investigated, respectively. An approximate integer order model for the fractional order hyper-chaotic Lorenz system is constructed while analyzing the projective synchronization scheme of the coupled fractional order hyper-chaotic Lorenz systems. The scaling factor of projective synchronization can be controlled onto a desired value by means of using a state error feedback control method. Illustrations are also given to show the rightness of the theoretical analysis and effectiveness of our proposed methods.
引用
收藏
页码:194 / 197
页数:4
相关论文
共 50 条
  • [41] Projective synchronization of fractional order chaotic system based on linear separation
    Wang Xingyuan
    He Yijie
    PHYSICS LETTERS A, 2008, 372 (04) : 435 - 441
  • [42] LAG FULL STATE HYBRID PROJECTIVE SYNCHRONIZATION IN DIFFERENT FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Tang, Yang
    Fang, Jian-An
    Chen, Liang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (31): : 6129 - 6141
  • [43] Circuit implementation and tracking control of the fractional-order hyper-chaotic Lu system
    Min Fu-Hong
    Yu Yang
    Ge Cao-Ju
    ACTA PHYSICA SINICA, 2009, 58 (03) : 1456 - 1461
  • [44] Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems
    Xing-Yuan Wang
    Ming-Jun Wang
    Nonlinear Dynamics, 2010, 62 : 567 - 571
  • [45] Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems
    Wang, Xing-Yuan
    Wang, Ming-Jun
    NONLINEAR DYNAMICS, 2010, 62 (03) : 567 - 571
  • [46] Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order
    Chen, Liang
    Huang, Chengdai
    Liu, Haidong
    Xia, Yonghui
    MATHEMATICS, 2019, 7 (06)
  • [47] Projective synchronization of a new 4-D quadratic autonomous hyper-chaotic system by a single input controller
    Sun, Zuosheng
    Guo, Rongwei
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4323 - 4325
  • [48] Synchronization, anti-synchronization and circuit realization of a novel hyper-chaotic system
    Lu, Yanjun
    Xiong, Li
    Zhang, Yongfang
    Zhang, Peijin
    Liu, Cheng
    Li, Sha
    Kang, Jianxiong
    CIRCUIT WORLD, 2018, 44 (03) : 132 - 149
  • [49] Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control
    A. Bouzeriba
    A. Boulkroune
    T. Bouden
    Neural Computing and Applications, 2016, 27 : 1349 - 1360
  • [50] Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters
    Wang, Cong
    Zhang, Hong-li
    Fan, Wen-hui
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 14 - 21