Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems

被引:1
|
作者
Xing Lifen [1 ]
Shang Gang [1 ]
Liu Jie [1 ]
Li Xinjie [1 ]
Dong Pengzhen [1 ]
机构
[1] Wuhan Univ Sci & Engn, Res Ctr Nonlinear Sci, Wuhan 430073, Peoples R China
来源
PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II | 2009年
关键词
fractional hyper-chaotic Lorenz system; projective synchronization; scaling factor; GENERALIZED SYNCHRONIZATION; ATTRACTOR; DESIGN;
D O I
10.1109/CINC.2009.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Projective synchronization in coupled hyper-chaotic Lorenz systems of integral order and its fractional order commensurate cases are both investigated, respectively. An approximate integer order model for the fractional order hyper-chaotic Lorenz system is constructed while analyzing the projective synchronization scheme of the coupled fractional order hyper-chaotic Lorenz systems. The scaling factor of projective synchronization can be controlled onto a desired value by means of using a state error feedback control method. Illustrations are also given to show the rightness of the theoretical analysis and effectiveness of our proposed methods.
引用
收藏
页码:194 / 197
页数:4
相关论文
共 50 条
  • [31] Projective synchronization of fractional-order chaotic systems based on sliding mode control
    Liu Ding
    Yan Xiao-Mei
    ACTA PHYSICA SINICA, 2009, 58 (06) : 3747 - 3752
  • [32] The Application of a Novel Fractional-order Hyper-chaotic System in Image Encryption
    Xue, Wei
    Liu, Shilong
    Zhang, Mei
    Li, Xue
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P177 - P180
  • [33] Parameter Identification of Chaotic and Hyper-Chaotic Systems Using Synchronization-Based Parameter Observer
    Chen, Zhihuan
    Yuan, Xiaohui
    Yuan, Yanbin
    Iu, Herbert Ho-Ching
    Fernando, Tyrone
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (09) : 1464 - 1475
  • [34] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    N'Doye, Ibrahima
    Salama, Khaled Nabil
    Laleg-Kirati, Taous-Meriem
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 268 - 277
  • [35] GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
    Wang Ming-Jun
    Wang Xing-Yuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (09): : 1283 - 1292
  • [36] A Novel Hybrid Function Projective Synchronization between Different Fractional-Order Chaotic Systems
    Zhou, Ping
    Yang, Xiao-You
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [37] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [38] Adaptive function projective combination synchronization of three different fractional-order chaotic systems
    Xi, Huiling
    Li, Yuxia
    Huang, Xia
    OPTIK, 2015, 126 (24): : 5346 - 5349
  • [39] Control and Projective Synchronization of Fractional-order Chaotic Systems Based on Sliding Mode Control
    Yan, Xiaomei
    Liu, Ding
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 893 - 898
  • [40] Double Integral Adaptive Synchronization of the Lorenz Chaotic Systems with Unknown Parameters
    Sun, Weiming
    Wang, Xinyu
    Lei, Junwei
    ADVANCES IN COMPUTER SCIENCE, ENVIRONMENT, ECOINFORMATICS, AND EDUCATION, PT II, 2011, 215 : 248 - +