Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems

被引:1
|
作者
Xing Lifen [1 ]
Shang Gang [1 ]
Liu Jie [1 ]
Li Xinjie [1 ]
Dong Pengzhen [1 ]
机构
[1] Wuhan Univ Sci & Engn, Res Ctr Nonlinear Sci, Wuhan 430073, Peoples R China
来源
PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II | 2009年
关键词
fractional hyper-chaotic Lorenz system; projective synchronization; scaling factor; GENERALIZED SYNCHRONIZATION; ATTRACTOR; DESIGN;
D O I
10.1109/CINC.2009.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Projective synchronization in coupled hyper-chaotic Lorenz systems of integral order and its fractional order commensurate cases are both investigated, respectively. An approximate integer order model for the fractional order hyper-chaotic Lorenz system is constructed while analyzing the projective synchronization scheme of the coupled fractional order hyper-chaotic Lorenz systems. The scaling factor of projective synchronization can be controlled onto a desired value by means of using a state error feedback control method. Illustrations are also given to show the rightness of the theoretical analysis and effectiveness of our proposed methods.
引用
收藏
页码:194 / 197
页数:4
相关论文
共 50 条
  • [21] Controlling projective synchronization in coupled chaotic systems
    Zou Yan-Li
    Zhu Jie
    CHINESE PHYSICS, 2006, 15 (09): : 1965 - 1970
  • [22] Function projective synchronization in coupled chaotic systems
    Du, Hongyue
    Zeng, Qingshuang
    Wang, Changhong
    Ling, Mingxiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 705 - 712
  • [23] A fractional-order hyper-chaotic system and its circuit implementation
    Xue, Wei
    Xiao, Hui
    Xu, Jinkang
    Jia, Hongyan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2015), 2015, : 187 - 190
  • [24] Projective synchronization of different fractional-order chaotic systems with non-identical orders
    Si, Gangquan
    Sun, Zhiyong
    Zhang, Yanbin
    Chen, Wenquan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1761 - 1771
  • [25] Robust H∞ synchronization of a hyper-chaotic system with disturbance input
    Wang, Bo
    Shi, Peng
    Karimi, Hamid Reza
    Song, Yongduan
    Wang, Jun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1487 - 1495
  • [26] ADAPTIVE FUNCTION Q-S SYNCHRONIZATION OF DIFFERENT CHAOTIC (HYPER-CHAOTIC) SYSTEMS
    Zhao, Jiakun
    Wu, Ying
    Wang, Yuying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (20):
  • [27] A new chaotic system with fractional order and its projective synchronization
    Xiangjun Wu
    Hui Wang
    Nonlinear Dynamics, 2010, 61 : 407 - 417
  • [28] Projective Synchronization of One Fractional-order Chaotic System
    孔德富
    科技视界, 2015, (20) : 159 - 160
  • [29] Projective synchronization control of fractional-order chaotic system
    Zhang, Fandi
    PROCEEDINGS OF THE 2018 8TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (ICASET 2018), 2018, 159 : 161 - 164
  • [30] Adaptive function projective synchronization between different fractional-order chaotic systems
    Zhou, P.
    Ding, R.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (06) : 497 - 501