f-biharmonic and bi-f-harmonic submanifolds of generalized (k, μ)-space-forms

被引:1
|
作者
Hui, Shyamal Kumar [1 ]
Breaz, Daniel [2 ]
Mandal, Pradip [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
[2] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia 510009, Romania
关键词
generalized; (k; mu)-space-forms; f-biharmonic submanifold; bi-f-biharmonic submanifold; f-biharmonic hypersurface; MAPS;
D O I
10.2478/auom-2019-0036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we have studied f-biharmonic and bi-f-harmonic submanifolds of generalized (k, mu)-space-forms and obtained a necessary and sufficient condition on a submanifold of generalized (k, mu)-space-form to be f-biharmonic and bi-f-harmonic submanifold. We have also studied f-biharmonic hypersurfaces of said ambient space forms.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 48 条
  • [31] Classification of f-Biharmonic Curves in Lorentz-Minkowski Space
    Du, Li
    Zhang, Juan
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [32] Some results and examples of the bi-f-harmonic maps
    Chemikh, Smail
    Behloul, Djilali
    Ouakkas, Seddik
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 163 - 181
  • [33] f-BIHARMONIC CURVES IN THREE-DIMENSIONAL GENERALIZED SYMMETRIC SPACES
    Bahous, Yasmine
    Belarbi, Lakehal
    Belarbi, Mansour
    Elhendi, Hichem
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (01): : 85 - 92
  • [34] Bi-f-harmonic map equations on singly warped product manifolds
    ZHAO Chunli
    LU Weijun
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2015, 30 (01) : 111 - 126
  • [35] Bi-f-harmonic map equations on singly warped product manifolds
    Chun-li Zhao
    Wei-jun Lu
    Applied Mathematics-A Journal of Chinese Universities, 2015, 30 : 111 - 126
  • [36] Bi-f-harmonic map equations on singly warped product manifolds
    Zhao Chun-li
    Lu Wei-jun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (01) : 111 - 126
  • [37] Bi-f-harmonic map equations on singly warped product manifolds
    ZHAO Chun-li
    LU Wei-jun
    Applied Mathematics:A Journal of Chinese Universities, 2015, (01) : 111 - 126
  • [38] Generalized globally framed f-space-forms
    Falcitelli, Maria
    Pastore, Anna Maria
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 291 - 305
  • [39] OPTIMAL CASORATI INEQUALITIES ON BI-SLANT SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS
    Siddiqui, Aliya Naaz
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (03): : 245 - 255
  • [40] GENERALIZED WINTGEN INEQUALITY FOR BI-SLANT SUBMANIFOLDS IN LOCALLY CONFORMAL KAEHLER SPACE FORMS
    Aquib, Mohd
    Lone, Mohamd Saleem
    Lone, Mehraj Ahmad
    MATEMATICKI VESNIK, 2018, 70 (03): : 243 - 249