OPTIMALITY VARIATIONAL PRINCIPLE FOR CONTROLLED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH MIXED INITIAL-TERMINAL CONDITIONS

被引:92
作者
Yong, Jiongmin [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
forward-backward stochastic differential equations; mixed initial-terminal conditions; optimal stochastic control; optimality variational principle; spike variation technique; MAXIMUM PRINCIPLE; RISK; AMBIGUITY;
D O I
10.1137/090763287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An optimal control problem for general coupled forward-backward stochastic differential equations (FBSDEs) with mixed initial-terminal conditions is considered. The control domain is not assumed to be convex, and the control appears in the diffusion coefficient of the forward equation. Necessary conditions of Pontraygin's type for the optimal controls are derived by means of spike variation techniques.
引用
收藏
页码:4119 / 4156
页数:38
相关论文
共 40 条
[2]  
[Anonymous], 1997, BACKWARD STOCHASTIC
[3]   Asset pricing with a forward-backward stochastic differential utility [J].
Antonelli, F ;
Barucci, E ;
Mancino, ME .
ECONOMICS LETTERS, 2001, 72 (02) :151-157
[4]  
Berkovitz L.D., 2013, Optimal control theory, V12, DOI DOI 10.1007/978-1-4757-6097-2
[5]   Choquet expectation and Peng's g-expectation [J].
Chen, ZJ ;
Chen, T ;
Davison, M .
ANNALS OF PROBABILITY, 2005, 33 (03) :1179-1199
[6]   Ambiguity, risk, and asset returns in continuous time [J].
Chen, ZJ ;
Epstein, L .
ECONOMETRICA, 2002, 70 (04) :1403-1443
[7]   Filtration-consistent, nonlinear expectations and related g-expectations [J].
Coquet, F ;
Hu, Y ;
Mémin, J ;
Peng, SG .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (01) :1-27
[8]  
Cvitaniˇc J., 2006, J. of Applied Mathematics and Stochastic Analysis, V2006, P1
[9]  
Denneberg D., 1994, NONADDITIVE MEASURE
[10]  
Doluchaev N, 1999, J MATH ANAL APPL, V238, P143