Modular Lie algebras and the Gelfand-Kirillov conjecture

被引:17
|
作者
Premet, Alexander [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
ENVELOPING-ALGEBRAS; REPRESENTATIONS; CENTERS;
D O I
10.1007/s00222-010-0249-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a finite dimensional simple Lie algebra over an algebraically closed field K of characteristic 0. Let g(Z) be a Chevalley Z-form of g and g(k) = g(Z) circle times(Z) k, where k is the algebraic closure of F(p). Let G(k) be a simple, simply connected algebraic k-group with Lie(G(k)) = g(k). In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(g(k)) to show that if the Gelfand-Kirillov conjecture (from 1966) holds for g, then for all p >> 0 the field of rational functions k(g(k)) is purely transcendental over its subfield k(g(k))(Gk). Very recently, it was proved by Colliot-Thelene, Kunyavskii, Popov, and Reichstein that the field of rational functions K(g) is not purely transcendental over its subfield K(g)(g) if g is of type B(n), n >= 3, D(n), n >= 4, E(6), E(7), E(8) or F(4). We prove a modular version of this result (valid for p >> 0) and use it to show that, in characteristic 0, the Gelfand-Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if g is of type B(n), n >= 3, D(n), n >= 4, E(6), E(7), E(8) or F(4), then the Lie field of g is more complicated than expected.
引用
收藏
页码:395 / 420
页数:26
相关论文
共 50 条
  • [1] Gelfand-Kirillov dimensions of simple modules over twisted group algebras k * A
    Gupta, A.
    Arunachalam, U.
    IZVESTIYA MATHEMATICS, 2022, 86 (04) : 715 - 726
  • [2] The Gelfand-Kirillov dimension of a unitary highest weight module
    Bai ZhanQiang
    Hunziker, Markus
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2489 - 2498
  • [3] Gelfand-Kirillov dimension and the p-adic Jacquet-Langlands correspondence
    Dospinescu, Gabriel
    Paskunas, Vytautas
    Schraen, Benjamin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 57 - 114
  • [4] Modular representations of Lie algebras of reductive groups and Humphreys' conjecture
    Premet, Alexander
    Topley, Lewis
    ADVANCES IN MATHEMATICS, 2021, 392
  • [5] Reeder's Conjecture for Even Orthogonal Lie Algebras
    Di Trani, Sabino
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (03) : 881 - 900
  • [6] Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras
    Futorny, Vyacheslav
    Krizka, Libor
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4901 - 4924
  • [7] On Reeder's Conjecture for Type B and C Lie Algebras
    Di Trani, Sabino
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (01) : 25 - 51
  • [8] Some Problems in the Representation Theory of Simple Modular Lie Algebras
    Benkart, Georgia
    Feldvoss, Joerg
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 207 - 228
  • [9] Strong contraction, the mirabolic group and the Kirillov conjecture
    Subag, E. M.
    Baruch, E. M.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [10] Quasiclassical Lie algebras
    Baranov, AA
    Zalesskii, AE
    JOURNAL OF ALGEBRA, 2001, 243 (01) : 264 - 293