Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting

被引:59
|
作者
Iorio, Francesco [1 ,2 ,5 ]
Behan, Fiona M. [2 ,5 ]
Goncalves, Emanuel [2 ]
Bhosle, Shriram G. [2 ]
Chen, Elisabeth [2 ]
Shepherd, Rebecca [2 ]
Beaver, Charlotte [2 ]
Ansari, Rizwan [2 ]
Pooley, Rachel [2 ]
Wilkinson, Piers [2 ]
Harper, Sarah [2 ]
Butler, Adam P. [2 ]
Stronach, Euan A. [3 ,5 ]
Saez-Rodriguez, Julio [1 ,4 ,5 ,6 ]
Yusa, Kosuke [2 ]
Garnett, Mathew J. [2 ,5 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[2] Wellcome Sanger Inst, Cambridge, England
[3] GlaxoSmithKline, Stevenage, Herts, England
[4] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed Aachen, Fac Med, Aachen, Germany
[5] Open Targets, Cambridge, England
[6] Heidelberg Univ, Bioquant, Inst Computat Biomed, Fac Med, Heidelberg, Germany
来源
BMC GENOMICS | 2018年 / 19卷
基金
英国惠康基金;
关键词
CRISPR-Cas9; Genetic screens; Cancer; Gene copy number; Bias correction; CIRCULAR BINARY SEGMENTATION; DRUG-SENSITIVITY; GENOME; IDENTIFICATION; SCREENS; VULNERABILITIES; MARKERS;
D O I
10.1186/s12864-018-4989-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene essentiality in cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes within copy number amplified regions of the genome. We have developed the computational tool CRISPRcleanR which is capable of identifying and correcting gene-independent responses to CRISPR-Cas9 targeting. CRISPRcleanR uses an unsupervised approach based on the segmentation of single-guide RNA fold change values across the genome, without making any assumption about the copy number status of the targeted genes. Results: Applying our method to existing and newly generated genome-wide essentiality profiles from 15 cancer cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling essential genes, correcting biases within and outside of amplified regions, while maintaining true positive rates. Established cancer dependencies and essentiality signals of amplified cancer driver genes are detectable post-correction. CRISPRcleanR reports sgRNA fold changes and normalised read counts, is therefore compatible with downstream analysis tools, and works with multiple sgRNA libraries. Conclusions: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 knockout screens to identify essential genes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] NOBEL PRIZE FOR CHEMISTRY Gene Editing with CRISPR-Cas9
    Welter, Kira
    CHEMIE IN UNSERER ZEIT, 2020, 54 (06) : 346 - 350
  • [42] Gene editing by SSB/CRISPR-Cas9 ribonucleoprotein in bacteria
    Chai, Ran
    Sun, Wenying
    Xu, Zhixu
    Yao, Xinding
    Chen, Shanshan
    Wang, Haifeng
    Guo, Jiaxiang
    Zhang, Qi
    Yang, Yanqing
    Li, Tao
    Chen, Shichang
    Qiu, Liyou
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
  • [43] CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum
    Wang, Ping-An
    Xiao, Han
    Zhong, Jian-Jiang
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (04) : 1661 - 1671
  • [44] CRISPR-Cas9: a new and promising player in gene therapy
    Lu Xiao-Jie
    Xue Hui-Ying
    Ke Zun-Ping
    Chen Jin-Lian
    Ji Li-Juan
    JOURNAL OF MEDICAL GENETICS, 2015, 52 (05) : 289 - 296
  • [45] The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit
    Bean, Bjorn D. M.
    Whiteway, Malcolm
    Martin, Vincent J. J.
    G3-GENES GENOMES GENETICS, 2022, 12 (08):
  • [46] Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9
    Bai, Meizhu
    Liang, Dan
    Wang, Yinghua
    Li, Qing
    Wu, Yuxuan
    Li, Jinsong
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) : 289 - 296
  • [47] Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9
    Meizhu Bai
    Dan Liang
    Yinghua Wang
    Qing Li
    Yuxuan Wu
    Jinsong Li
    JournalofGeneticsandGenomics, 2016, 43 (05) : 289 - 296
  • [48] Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9
    Wu, Yuxuan
    Liang, Dan
    Wang, Yinghua
    Bai, Meizhu
    Tang, Wei
    Bao, Shiming
    Yan, Zhiqiang
    Li, Dangsheng
    Li, Jinsong
    CELL STEM CELL, 2013, 13 (06) : 659 - 662
  • [49] High-throughput screens in mammalian cells using the CRISPR-Cas9 system
    Peng, Jingyu
    Zhou, Yuexin
    Zhu, Shiyou
    Wei, Wensheng
    FEBS JOURNAL, 2015, 282 (11) : 2089 - 2096
  • [50] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855