Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting

被引:59
|
作者
Iorio, Francesco [1 ,2 ,5 ]
Behan, Fiona M. [2 ,5 ]
Goncalves, Emanuel [2 ]
Bhosle, Shriram G. [2 ]
Chen, Elisabeth [2 ]
Shepherd, Rebecca [2 ]
Beaver, Charlotte [2 ]
Ansari, Rizwan [2 ]
Pooley, Rachel [2 ]
Wilkinson, Piers [2 ]
Harper, Sarah [2 ]
Butler, Adam P. [2 ]
Stronach, Euan A. [3 ,5 ]
Saez-Rodriguez, Julio [1 ,4 ,5 ,6 ]
Yusa, Kosuke [2 ]
Garnett, Mathew J. [2 ,5 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[2] Wellcome Sanger Inst, Cambridge, England
[3] GlaxoSmithKline, Stevenage, Herts, England
[4] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed Aachen, Fac Med, Aachen, Germany
[5] Open Targets, Cambridge, England
[6] Heidelberg Univ, Bioquant, Inst Computat Biomed, Fac Med, Heidelberg, Germany
来源
BMC GENOMICS | 2018年 / 19卷
基金
英国惠康基金;
关键词
CRISPR-Cas9; Genetic screens; Cancer; Gene copy number; Bias correction; CIRCULAR BINARY SEGMENTATION; DRUG-SENSITIVITY; GENOME; IDENTIFICATION; SCREENS; VULNERABILITIES; MARKERS;
D O I
10.1186/s12864-018-4989-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene essentiality in cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes within copy number amplified regions of the genome. We have developed the computational tool CRISPRcleanR which is capable of identifying and correcting gene-independent responses to CRISPR-Cas9 targeting. CRISPRcleanR uses an unsupervised approach based on the segmentation of single-guide RNA fold change values across the genome, without making any assumption about the copy number status of the targeted genes. Results: Applying our method to existing and newly generated genome-wide essentiality profiles from 15 cancer cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling essential genes, correcting biases within and outside of amplified regions, while maintaining true positive rates. Established cancer dependencies and essentiality signals of amplified cancer driver genes are detectable post-correction. CRISPRcleanR reports sgRNA fold changes and normalised read counts, is therefore compatible with downstream analysis tools, and works with multiple sgRNA libraries. Conclusions: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 knockout screens to identify essential genes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a
    Ishibashi, Riki
    Maki, Ritsuko
    Toyoshima, Fumiko
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [22] CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential
    Blenke, Erik Oude
    Evers, Martijn J. W.
    Mastrobattista, Enrico
    van der Oost, John
    JOURNAL OF CONTROLLED RELEASE, 2016, 244 : 139 - 148
  • [23] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641
  • [24] Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing
    Stewart, J.
    Banerjee, S.
    Pettitt, S. J.
    Lord, C. J.
    CLINICAL ONCOLOGY, 2020, 32 (02) : 69 - 74
  • [25] Review of applications of CRISPR-Cas9 gene-editing technology in cancer research
    Zhao, Ziyi
    Li, Chenxi
    Tong, Fei
    Deng, Jingkuang
    Huang, Guofu
    Sang, Yi
    BIOLOGICAL PROCEDURES ONLINE, 2021, 23 (01)
  • [26] Development of capability for genome-scale CRISPR-Cas9 knockout screens in New Zealand
    Hunter, Francis W.
    Tsai, Peter
    Kakadia, Purvi M.
    Bohlander, Stefan K.
    Print, Cristin G.
    Wilson, William R.
    JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2018, 48 (04) : 245 - 261
  • [27] Application of CRISPR-Cas9 in microbial cell factories
    Jinhui Yang
    Junyan Song
    Zeyu Feng
    Yunqi Ma
    Biotechnology Letters, 2025, 47 (3)
  • [28] CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice
    Yin, Xiaojia
    Biswal, Akshaya K.
    Dionora, Jacqueline
    Perdigon, Kristel M.
    Balahadia, Christian P.
    Mazumdar, Shamik
    Chater, Caspar
    Lin, Hsiang-Chun
    Coe, Robert A.
    Kretzschmar, Tobias
    Gray, Julie E.
    Quick, Paul W.
    Bandyopadhyay, Anindya
    PLANT CELL REPORTS, 2017, 36 (05) : 745 - 757
  • [29] Chemistry Nobel Honors CRISPR-Cas9
    You Li-Lan
    Sun Wei
    Yang Xiao-Qi
    Wang Yan-Li
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2020, 47 (11) : 1119 - 1126
  • [30] Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9
    Kuehn, Ralf
    Chu, Van Trung
    GENOME BIOLOGY, 2015, 16