Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi2Te3-Based Alloys via a Facile MgB2 Doping Strategy

被引:72
作者
Chen, Bin [1 ]
Li, Junqin [1 ]
Wu, Mengnan [1 ]
Hu, Lipeng [1 ]
Liu, Fusheng [1 ]
Ao, Weiqin [1 ]
Li, Yu [1 ]
Xie, Heping [1 ]
Zhang, Chaohua [1 ]
机构
[1] Shenzhen Univ, Guangdong Res Ctr Interfacial Engn Funct Mat, Coll Mat Sci & Engn,Shenzhen Key Lab Special Func, Shenzhen Engn Lab Adv Technol Ceram,Inst Deep Und, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
thermoelectric; mechanical; MgB2; doping; bismuth telluride; carrier density optimization; LATTICE THERMAL-CONDUCTIVITY; BISMUTH-TELLURIDE; NANOCOMPOSITES; BORON; POWER; CU; DEFECTS; DRIVEN;
D O I
10.1021/acsami.9b16781
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Bi2Te3-based alloys have been commercialized for the applications of energy harvesting and refrigeration for decades. However, the commercial Bi2Te3-based alloys produced by the zone-melting (ZM) method usually show poor mechanical strength and crack problems as well as the sluggish figure of merit ZT, especially for the less-progressed n-type samples. In this work, we have simultaneously enhanced the thermoelectric and mechanical performance of the one-step spark plasma sintering (SPS)-derived n-type Bi2Te2.7Se0.3 alloys just by doping a small amount of superconducting material MgB2 where Mg and B atoms can play significant roles in carrier density optimization and hardness enhancement. Besides the optimization of carrier density, the MgB2 doping can also increase the carrier mobility but decrease the lattice and bipolar thermal conductivity, leading to a peak ZT of 0.96 at 325 K and an average ZT of 0.88 within 300-500 K in the 0.5% MgB2-doped Bi2Te2.7Se0.3 (BTSMB) alloys. The peak ZT and average ZT of our optimized BTSMB samples are comparable and higher than those of the state-of-the-art commercial ZM ingot. Moreover, the optimized BTSMB sample also exhibits almost 70% enhancement in hardness compared with the ZM ingot. Our results demonstrate the great potential of the MgB2 doping strategy for mass production of SPS-derived Bi2Te3-based alloys in one-step sintering.
引用
收藏
页码:45746 / 45754
页数:9
相关论文
共 56 条
[1]   Perspective: Superhard metal borides: A look forward [J].
Akopov, Georgiy ;
Pangilinan, Lisa E. ;
Mohammadi, Reza ;
Kaner, Richard B. .
APL MATERIALS, 2018, 6 (07)
[3]   Synthesis of M- doped ( M = Ag, Cu, In) Bi2Te3 nanoplates via a solvothermal method and cation exchange reaction [J].
Bai, Xiangyun ;
Ji, Muwei ;
Xu, Meng ;
Su, Ning ;
Zhang, Jiatao ;
Wang, Jin ;
Zhu, Caizhen ;
Yao, Youwei ;
Li, Bo .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (04) :1097-1102
[4]  
Bedolla-Jacuinde A, 2013, MAT SCI TECHNOL, V25, P361
[5]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[6]   EFFECTS OF BORON ON THE DEFORMATION-BEHAVIOR OF NI3AL [J].
BRUSSO, JA ;
MIKKOLA, DE .
JOURNAL OF MATERIALS RESEARCH, 1994, 9 (07) :1742-1754
[7]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[8]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[9]   Complex Band Structures and Lattice Dynamics of Bi2Te3-Based Compounds and Solid Solutions [J].
Fang, Teng ;
Li, Xin ;
Hu, Chaoliang ;
Zhang, Qi ;
Yang, Jiong ;
Zhang, Wenqing ;
Zhao, Xinbing ;
Singh, David J. ;
Zhu, Tiejun .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
[10]   Resonant levels in bulk thermoelectric semiconductors [J].
Heremans, Joseph P. ;
Wiendlocha, Bartlomiej ;
Chamoire, Audrey M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5510-5530