The Lefschetz property for componentwise linear ideals and Gotzmann ideals

被引:29
作者
Wiebe, A [1 ]
机构
[1] Univ Duisburg Gesamthsch, Fachbereich Math & Informat, D-45141 Essen, Germany
关键词
Lefschetz property; componentwise linear ideals; Gotzmann ideals;
D O I
10.1081/AGB-200036809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.
引用
收藏
页码:4601 / 4611
页数:11
相关论文
共 17 条
[1]   Ideals with stable Betti numbers [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
ADVANCES IN MATHEMATICS, 2000, 152 (01) :72-77
[2]   Components of the space parametrizing graded Gorenstein Artin algebras with a given Hilbert function [J].
Boij, M .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 187 (01) :1-11
[3]  
Bruns W., 1998, COHEN MACAULAY RINGS
[4]   Reduction numbers and initial ideals [J].
Conca, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1015-1020
[5]  
CONCA A, 2003, RIGID RESOLUTIONS BE
[6]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[7]   MINIMAL RESOLUTIONS OF SOME MONOMIAL IDEALS [J].
ELIAHOU, S ;
KERVAIRE, M .
JOURNAL OF ALGEBRA, 1990, 129 (01) :1-25
[9]   The Weak and Strong Lefschetz properties for Artinian K-algebras [J].
Harima, T ;
Migliore, JC ;
Nagel, U ;
Watanabe, J .
JOURNAL OF ALGEBRA, 2003, 262 (01) :99-126
[10]   Componentwise linear ideals [J].
Herzog, J ;
Hibi, T .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :141-153