Ice-based triboelectric nanogenerator with low friction and self-healing properties for energy harvesting and ice broken warning

被引:15
作者
Luo, Ning [1 ,3 ]
Xu, Guanping [1 ,3 ]
Feng, Yange [1 ]
Yang, Di [1 ,3 ]
Wu, Yang [1 ]
Dong, Yang [1 ,3 ]
Zhang, Liqiang [1 ]
Wang, Daoai [1 ,2 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Qingdao Ctr Resource Chem & New Mat, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Ice-triboelectric nanogenerator; Self-healing; Low friction; Energy harvesting; Danger warning; SENSOR; TENG;
D O I
10.1016/j.nanoen.2022.107144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a new type of ice-based triboelectric nanogenerator (ICE-TENG) has been fabricated to harvest energy in cold weather. Ice is a preferred material for designing TENGs in cold winter, alpine or snowy mountain regions because of its cleanness, environmental protection, abundant reserves, low friction, and self-healing properties. The short-circuit current and voltage can achieve 2.4 mu A and 48 V with 4 mm thickness of ice layer, 30 N loadings, and 5 Hz contact frequency, which can be useful in some practical applications such as lighting LEDs and charging capacitors. The ICE-TENG possesses excellent stability and can reach an output power of 35 mu W under 20 MCI loading resistance. The coefficient of friction between ice and other friction pairs is negligible, and it can even become super-slippery with the coefficient of friction below 0.008. Thus, the wear of the friction pairs is small, which can help TENG to have a long working life. Besides, due to the rapid phase change of ice, the ICE-TENG exhibits a commendable self-healing ability and maintains the original output performance after several damage and repair processes. To simulate the practical applications, a single electrode ICE-TENG driven by walking has been designed for harvesting energy on the ice surface. Because of the difference in electric output before and after the ice fragmentation, the ICE-TENGs are designed to construct a warning system to remind the danger when the ice surface suddenly shatters. Moreover, such ICE-TENGs are capable of lighting "ICE" LEDs and powering an electric watch with footsteps. This illustrates a promising potential in self-powered systems such as danger warning, charge shortage, and energy harvesting.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Bio-based epoxidized natural rubber/chitosan/cellulose nanocrystal composites for enhancing mechanical properties, self-healing behavior and triboelectric nanogenerator performance
    Somseemee, Oranooch
    Sae-Oui, Pongdhorn
    Siriwong, Chomsri
    CELLULOSE, 2022, 29 (16) : 8675 - 8693
  • [32] A highly sensitive magnetic configuration-based triboelectric nanogenerator for multidirectional vibration energy harvesting and self-powered environmental monitoring
    Park, Minseok
    Cho, Sumin
    Yun, Yeongcheol
    La, Moonwoo
    Park, Sung Jea
    Choi, Dongwhi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 18262 - 18274
  • [33] Wood plastic composites (WPC) waste based triboelectric nanogenerator for mechanical energy harvesting and self-powered applications
    Sunitha, V. Lakshmi
    Supraja, P.
    Prasad, K. A. K. Durga
    Navaneeth, M.
    Babu, Anjaly
    Mahesh, V
    Kumar, K. Uday
    Haranath, D.
    Kumar, R. Rakesh
    MATERIALS LETTERS, 2023, 351
  • [34] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291
  • [35] 3D Stitching Double Weave Fabric-Based Elastic Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Zhao, Yixi
    Shen, Yunchu
    Wang, Kai
    Ma, Pibo
    Wang, Fumei
    Chen, Chaoyu
    ENERGIES, 2023, 16 (05)
  • [36] Triboelectric nanogenerator based on direct image lithography and surface fluorination for biomechanical energy harvesting and self-powered sterilization
    Feng, Hanfang
    Li, Huayang
    Xu, Jin
    Yin, Yiming
    Cao, Jinwei
    Yu, Ruoxin
    Wang, Bingxue
    Li, Runwei
    Zhu, Guang
    NANO ENERGY, 2022, 98
  • [37] Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting
    Dai, Shaoshi
    Chai, Yuanchao
    Liu, Hengxu
    Yu, Dan
    Wang, Keyi
    Kong, Fankai
    Chen, Hailong
    NANO ENERGY, 2023, 115
  • [38] Flexible thermoelectric composite materials with self-healing ability for harvesting low-grade thermal energy
    Song, Yi Xi
    Zeng, Wei
    Rong, Min Zhi
    Zhang, Ming Qiu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 242
  • [39] A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing
    Xu, Minyi
    Wang, Peihong
    Wang, Yi-Cheng
    Zhang, Steven L.
    Wang, Aurelia Chi
    Zhang, Chunli
    Wang, Zhengjun
    Pan, Xinxiang
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2018, 8 (09)
  • [40] Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor
    Zhao, Chenghan
    Wu, Yinghui
    Dai, Xingyi
    Han, Jiancheng
    Dong, Biqin
    Huang, Long-Biao
    MATERIALS & DESIGN, 2022, 221