Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery

被引:53
作者
Wan, Zipei [1 ]
Shi, Kai [1 ]
Huang, Yanfei [2 ]
Yang, Lu [3 ]
Yun, Qinbai [4 ]
Chen, Likun [1 ]
Ren, Fuzeng [3 ]
Kang, Feiyu [1 ]
He, Yan-Bing [1 ]
机构
[1] Tsinghua Univ, Shenzhen All Solid State Lithium Battery Electrol, Tsinghua Shenzhen Int Grad Sch, Inst Mat Res IMR, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[4] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Porous Zn layer; Li-Zn alloy; Solid-state electrolyte; Li dendrite; All-solid-state battery; LITHIUM; ELECTROLYTE; ANODES; PROGRESS;
D O I
10.1016/j.jpowsour.2021.230062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interfacial issues between garnet electrolyte and Li metal hinder the application of garnet electrolyte in solidstate Li metal batteries. Herein, a three-dimensional (3D) porous Zn layer (PZL) is magnetron sputtered on the surface of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) to construct a 3D Li-Zn alloy layer at the LLZTO/Li interface by melting Li metal into PZL. The 3D Li-Zn alloy effectively reduces the LLZTO/Li interfacial impedance from 319.8 omega cm2 to an extremely low value of 1.9 omega cm2. Meanwhile, the 3D alloy skeleton can enhance the transport kinetics and promote uniform distribution of Li ion at interface to inhibit the growth of Li dendrites. More importantly, the volume expansion of interface between LLZO and Li metal anode is effectively suppressed due to the host role of 3D Li-Zn alloy interface. The Li/LLZTO@PZL/Li symmetrical battery achieves a high critical current density of 2 mA cm-2 for one cycle. The all-solid-state LiNi0.5Co0.2Mn0.3O2 (NCM523)/LLZTO@PZL/Li battery with a high cathode loading of 4.9 mg cm-2 delivers a high specific capacity of 143.8 mAh g-1 after 170 cycles. The 3D alloy interface is significant for enhancing the interfacial stability of high capacity all-solid-state lithium metal batteries.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy
    Manalastas, William, Jr.
    Rikarte, Jokin
    Chater, Richard J.
    Brugge, Rowena
    Aguadero, Ainara
    Buannic, Lucienne
    Llordes, Anna
    Aguesse, Frederic
    Kilner, John
    [J]. JOURNAL OF POWER SOURCES, 2019, 412 (287-293) : 287 - 293
  • [32] Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations
    Oswald, S.
    [J]. APPLIED SURFACE SCIENCE, 2015, 351 : 492 - 503
  • [33] Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12
    Park, Kyusung
    Yu, Byeong-Chul
    Jung, Ji-Won
    Li, Yutao
    Zhou, Weidong
    Gao, Hongcai
    Son, Samick
    Goodenough, John B.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (21) : 8051 - 8059
  • [34] Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet Type Solid-State Li Batteries
    Shao, Yuanjun
    Wang, Hongchun
    Gong, Zhengliang
    Wang, Dawei
    Zheng, Bizhu
    Zhu, Jianping
    Lu, Yaxiang
    Hu, Yong-Sheng
    Guo, Xiangxin
    Li, Hong
    Huang, Xuejie
    Yang, Yong
    Nan, Ce-Wen
    Chen, Liquan
    [J]. ACS ENERGY LETTERS, 2018, 3 (06): : 1212 - 1218
  • [35] Shi K., 2020, ANGEW CHEM INT EDIT, V132, P11882, DOI [10.1002/ange.202000547, DOI 10.1002/ANGE.202000547]
  • [36] Revealing the Short-Circuiting Mechanism of Garnet-Based Solid-State Electrolyte
    Song, Yongli
    Yang, Luyi
    Zhao, Wenguang
    Wang, Zijian
    Zhao, Yan
    Wang, Ziqi
    Zhao, Qinghe
    Liu, Hao
    Pan, Feng
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (21)
  • [37] XPS and UPS studies on electronic structure of Li2O
    Tanaka, S
    Taniguchi, M
    Tanigawa, H
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2000, 283 : 1405 - 1408
  • [38] Electro-chemo-mechanics of lithium in solid state lithium metal batteries
    Tang, Yongfu
    Zhang, Liqiang
    Chen, Jingzhao
    Sun, Haiming
    Yang, Tingting
    Liu, Qiunan
    Huang, Qiao
    Zhu, Ting
    Huang, Jianyu
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (02) : 602 - 642
  • [39] Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries
    Tian, Yijun
    Ding, Fei
    Zhong, Hai
    Liu, Cheng
    He, Yan-Bing
    Liu, Jiaquan
    Liu, Xingjiang
    Xu, Qiang
    [J]. ENERGY STORAGE MATERIALS, 2018, 14 : 49 - 57
  • [40] Design principles for electrolytes and interfaces for stable lithium-metal batteries
    Tikekar, Mukul D.
    Choudhury, Snehashis
    Tu, Zhengyuan
    Archer, Lynden A.
    [J]. NATURE ENERGY, 2016, 1 : 1 - 7